Synthesis of Nano-Barium Titanate and Application for Strontium Adsorption from Aqueous Solution

Article Preview

Abstract:

Barium Titanate (BaTiO3) nanostructures are synthesized by the molten salt-hydroxide reaction. The crystalline phase and chemical structure of the synthesized material are analyzed using powder x-ray diffraction (XRD) and FT-IR techniques, revealing the tetragonal BaTiO3 crystalline structure. Morphology and thermal stability of the material are characterized using TEM and TG-DTG analysis. BET surface area analysis shows significant active surface available for adsorption and its surface area value is found to be 14.8427 m2 g-1. The maximum adsorption of strontium metal is found to be 56.3 for the 1.2 g L-1 BaTiO3 adsorbent dose which reveals a remarkable separation property of the BaTiO3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

190-195

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Chegrouche, A. Mellah, M. Barkat, Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies, desalination, 2009, 235, 306-318.

DOI: 10.1016/j.desal.2008.01.018

Google Scholar

[2] S. Inan and Y. Atlas, Adsorption of Strontium from acidic Waste Solution by Mn-Zr Mixed Hydrous Oxide Prepared by Co-Precipitation, Separ. Sci. Technol., 2010, 45, 269-276.

DOI: 10.1080/01496390903409666

Google Scholar

[3] H. Matsumoto, H. Kakibayashi, Y. Taniguchi, I-Kuan Cheng, Ting-Tai Lee, Characterization of Solid-State Reaction of Barium Carbonate and Titanium Dioxide by Spatially Resolved Electron Energy Loss Spectroscopy, J. Am. Ceram. Soc., 2013, 96.

DOI: 10.1111/jace.12381

Google Scholar

[8] 2651–2656.

Google Scholar

[4] Y. Zhang, L. Wang , D. Xue, Molten salt route of well dispersive barium titanate nanoparticles, Powder Technol. 2012, 217 , 629-633.

DOI: 10.1016/j.powtec.2011.11.043

Google Scholar

[5] P. Sharma and H.S. Virk, Fabrication of Nanoparticles of Barium Carbonate/Oxalate Using Reverse Micelle Technique, The Open Surf. Scie. Journal, 2009, 1, 34-39.

DOI: 10.2174/1876531900901010034

Google Scholar

[6] M. D. C. B. Lo´pez, G. Fourlaris, B. Rand, F. L. Riley, Characterization of Barium Titanate Powders: Barium Carbonate Identification, J. Am. Ceram. Soc. 1999, 82.

DOI: 10.1111/j.1151-2916.1999.tb01999.x

Google Scholar

[7] 1777–86.

Google Scholar

[7] U. -Y. Hwang, H. -S. Park, K. -K. Koo, Low-Temperature Synthesis of Fully Crystallized Spherical BaTiO3 Particles by the Gel–Sol Method, J. Am. Ceram. Soc. 2004, 87.

DOI: 10.1111/j.1151-2916.2004.tb07486.x

Google Scholar

[12] 2168–2174.

Google Scholar

[8] Z. Q. Shi, Q. X. Jia, W. A. Anderson, High-Performance barium titanate capacitors with double layer structure, J. Electron. Mate., 1991,  20.

Google Scholar

[11] 939-944.

Google Scholar

[9] S. Ohara, A. Kondo, H. Shimoda, K. Sato, H. Abe, M. Naito, Rapid mechanochemical synthesis of fine barium titanate nanoparticles, Mater. Lett., 2008, 62, 2957–2959.

DOI: 10.1016/j.matlet.2008.01.083

Google Scholar

[10] D. Hennings, S. Schreinemacher, Characterization of Hydrothermal Barium Titanate, , J. Europ. Ceram. Soci., 1992, 9, 41-46.

Google Scholar