[1]
Y. K. Vohra and P. T. Spencer, Novel gamma-phase of titanium metal at megabar pressures, Phys. Rev. Lett. 86 (2001) 3068-3071.
DOI: 10.1103/physrevlett.86.3068
Google Scholar
[2]
E. F. Ibrahim and B. A. Cheadle, Development of zirconium alloys forpressure tubes in candu reactors, Canadian Metallurgical Quarterly. 24 (1985) 273-281.
DOI: 10.1179/cmq.1985.24.3.273
Google Scholar
[3]
S. M. Ikhdair and R. Sever, Exact solutions of the modified kratzer potential plus ring-shaped potential in the d-dimensional Schrödinger equation by the nikiforov–uvarov method, Int. J. Mod. Phys. C. 19 (2008) 221.
DOI: 10.1142/s0129183108012030
Google Scholar
[4]
M. Acharyya, Nonequilibrium phase transitions in model ferromagnets: a review, Int. J. Mod. Phys. C. 11 (2005) 1631-1670.
DOI: 10.1142/s0129183105008266
Google Scholar
[5]
A. Laik, K. Bhanumurthy and G. B. Kale, Intermetallics in the Zr–Al diffusion zone, Intermetallics. 12(2004) 69–74.
DOI: 10.1016/j.intermet.2003.09.002
Google Scholar
[6]
C. G. Wilson and D. Sams, The crystal structure of Zr2Al, ActaCrystallogr. 14 (1961) 71-72.
Google Scholar
[7]
N. Rathod, S.K. Gupta and P.K. Jha, Dynamical stability and phase transition of ZrC under pressure, Phase transition. 85 (2012) 1060-1069.
DOI: 10.1080/01411594.2012.661862
Google Scholar
[8]
L. Wang, S. hou and D. Liang, First-principles investigations on the phase stability, elastic and thermodynamic properties of Zr–Al alloys, Int. J. Mod. Phys. C 12 (2015) 1550143.
DOI: 10.1142/s0129183115501430
Google Scholar
[9]
F. J. Spooner and C. G. Wilson, The crystal structure of ZrAl, ActaCrystallogr. 15 (1962) 621-622.
Google Scholar
[10]
X. L. Yuan, D. Q. Wei, Y. Cheng, Q. M. Zhang, and Z. Z. Gong, Thermodynamic properties of Zr2Al under high pressure from first-principles calculations,J. At. Mol. Sci. 3 (2012) 160-170.
Google Scholar
[11]
Y. H. Duan, Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation, J. Alloys Compd. 590 (2014) 50-60.
DOI: 10.1016/j.jallcom.2013.12.079
Google Scholar
[12]
N. Arikan, The first-principles study on Zr3Al and Sc3Al in L12 structure, J. Phys. Chem. Solids. 74 (2013) 794-798.
DOI: 10.1016/j.jpcs.2013.01.035
Google Scholar
[13]
R. J. Kematick and H. F. Franzen, Thermodynamic study of the zirconium-aluminum system, J. Solid State Chem. 54 (1984) 226-234.
DOI: 10.1016/0022-4596(84)90150-6
Google Scholar
[14]
J. Murray, A. Peruzzi and J. P. Abriata, The Al-Zr (aluminum-zirconium) system, J. Phase Equilib. 13(1992) 277-291.
DOI: 10.1007/bf02667556
Google Scholar
[15]
A. Peruzzi, Reinvestigation of the Zr-rich end of the Zr-Al equilibrium phase diagram J. Nucl. Mater. 186(2) (1992) 89-99.
DOI: 10.1016/0022-3115(92)90326-g
Google Scholar
[16]
M. Nakamura and K. Kimura, Elastic constants of TiAl3 and ZrAl3 single crystals, J. Mater. Sci. 26 (1991) 2208-2214.
DOI: 10.1007/bf00549190
Google Scholar
[17]
J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23 (1981) 5048.
DOI: 10.1103/physrevb.23.5048
Google Scholar
[18]
P. Giannozzi et al, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials 2009, J. Phys.: Condens. Matter. 21 (2009) 395502.
Google Scholar
[19]
S. Baroni, S. Gironcoli, A. Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001) 515.
DOI: 10.1103/revmodphys.73.515
Google Scholar
[20]
R. B. Russel, On the Zr‐Hf System, J. Appl. Phys. 24 (1953) 232.
Google Scholar
[21]
M. Potzschke and K. Schubert, On the Constitution of some T4-B3 Systems or Quasi-T4-B3 Systems, Z. Metallkde. 53 (1962) 548-561.
Google Scholar
[22]
H. M. Otte, W. G. Montague and D. O. Welch, X‐Ray Diffractometer Determination of the Thermal Expansion Coefficient of Aluminum near Room Temperature, J. Appl. Phys. 34 (1963) 3149.
DOI: 10.21236/ad0410258
Google Scholar
[23]
F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc Natl AcadSci (U S A). 30(9) (1944)244–247.
DOI: 10.1073/pnas.30.9.244
Google Scholar
[24]
P.K. Jha, Phonon spectra and vibrational mode instability of MgCNi3, Phys. Rev. B. 72 (2005)214502.
Google Scholar
[25]
P.K. Jha and S.P. Sanyal, A lattice dynamical study of the role of pressure on Raman modes in high-Tc HgBa2CuO4, Physica C. 261 (1996)259-262.
DOI: 10.1016/0921-4534(96)00148-7
Google Scholar
[26]
P.K. Jha and S.P. Sanyal, Phonon spectrum and lattice specific heat of the HgBa2CuO4 high-temperature superconductor, Physica C. 271 (1996)6-10.
DOI: 10.1016/s0921-4534(96)00536-9
Google Scholar
[27]
P.K. Jha and S.P. Sanyal, Lattice vibrations in Yb-pnictide compounds, Phys. Rev. B. 52 (1995)15898.
DOI: 10.1103/physrevb.52.15898
Google Scholar
[28]
C. Lee and X. Gonze, Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite, Phys. Rev. B. 51 (1995)8610-8611.
DOI: 10.1103/physrevb.51.8610
Google Scholar
[29]
V. Mankad, N. Rathod, S. D. Gupta, S. K. Gupta, P. K. Jha, Stable structure of platinum carbides: A first principles investigation on the structure, elastic, electronic and phonon properties, Mat. Phys. Chem. 129 (2011)816-822.
DOI: 10.1016/j.matchemphys.2011.05.014
Google Scholar