Structural, Electronic and Dynamical Properties of Binary Alloy Zr-Al Using Density Functional Theory

Article Preview

Abstract:

The structural, electronic, dynamical and thermodynamical properties of binary Zr-Al alloy (Zr3Al) with its end members are studied using the first principles calculations based on density functional theory. We have employed the Perdew-Zunger local density approximation as the exchange correlational functional in these calculations. There is a good agreement between present and available and experimental and other theoretical data. The calculated electronic band structure and density of states suggest that the Zr-Al alloy and its end members are metallic in nature consistent with earlier studies. Full phonon dispersion curves and phonon density of states are also calculated which show the dynamical stability of these compounds at zero pressure. The temperature dependence of the thermodynamical functions are also presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

204-209

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. K. Vohra and P. T. Spencer, Novel gamma-phase of titanium metal at megabar pressures, Phys. Rev. Lett. 86 (2001) 3068-3071.

DOI: 10.1103/physrevlett.86.3068

Google Scholar

[2] E. F. Ibrahim and B. A. Cheadle, Development of zirconium alloys forpressure tubes in candu reactors, Canadian Metallurgical Quarterly. 24 (1985) 273-281.

DOI: 10.1179/cmq.1985.24.3.273

Google Scholar

[3] S. M. Ikhdair and R. Sever, Exact solutions of the modified kratzer potential plus ring-shaped potential in the d-dimensional Schrödinger equation by the nikiforov–uvarov method, Int. J. Mod. Phys. C. 19 (2008) 221.

DOI: 10.1142/s0129183108012030

Google Scholar

[4] M. Acharyya, Nonequilibrium phase transitions in model ferromagnets: a review, Int. J. Mod. Phys. C. 11 (2005) 1631-1670.

DOI: 10.1142/s0129183105008266

Google Scholar

[5] A. Laik, K. Bhanumurthy and G. B. Kale, Intermetallics in the Zr–Al diffusion zone, Intermetallics. 12(2004) 69–74.

DOI: 10.1016/j.intermet.2003.09.002

Google Scholar

[6] C. G. Wilson and D. Sams, The crystal structure of Zr2Al, ActaCrystallogr. 14 (1961) 71-72.

Google Scholar

[7] N. Rathod, S.K. Gupta and P.K. Jha, Dynamical stability and phase transition of ZrC under pressure, Phase transition. 85 (2012) 1060-1069.

DOI: 10.1080/01411594.2012.661862

Google Scholar

[8] L. Wang, S. hou and D. Liang, First-principles investigations on the phase stability, elastic and thermodynamic properties of Zr–Al alloys, Int. J. Mod. Phys. C 12 (2015) 1550143.

DOI: 10.1142/s0129183115501430

Google Scholar

[9] F. J. Spooner and C. G. Wilson, The crystal structure of ZrAl, ActaCrystallogr. 15 (1962) 621-622.

Google Scholar

[10] X. L. Yuan, D. Q. Wei, Y. Cheng, Q. M. Zhang, and Z. Z. Gong, Thermodynamic properties of Zr2Al under high pressure from first-principles calculations,J. At. Mol. Sci. 3 (2012) 160-170.

Google Scholar

[11] Y. H. Duan, Stability, elastic properties and electronic structures of the stable Zr–Al intermetallic compounds: A first-principles investigation, J. Alloys Compd. 590 (2014) 50-60.

DOI: 10.1016/j.jallcom.2013.12.079

Google Scholar

[12] N. Arikan, The first-principles study on Zr3Al and Sc3Al in L12 structure, J. Phys. Chem. Solids. 74 (2013) 794-798.

DOI: 10.1016/j.jpcs.2013.01.035

Google Scholar

[13] R. J. Kematick and H. F. Franzen, Thermodynamic study of the zirconium-aluminum system, J. Solid State Chem. 54 (1984) 226-234.

DOI: 10.1016/0022-4596(84)90150-6

Google Scholar

[14] J. Murray, A. Peruzzi and J. P. Abriata, The Al-Zr (aluminum-zirconium) system, J. Phase Equilib. 13(1992) 277-291.

DOI: 10.1007/bf02667556

Google Scholar

[15] A. Peruzzi, Reinvestigation of the Zr-rich end of the Zr-Al equilibrium phase diagram J. Nucl. Mater. 186(2) (1992) 89-99.

DOI: 10.1016/0022-3115(92)90326-g

Google Scholar

[16] M. Nakamura and K. Kimura, Elastic constants of TiAl3 and ZrAl3 single crystals, J. Mater. Sci. 26 (1991) 2208-2214.

DOI: 10.1007/bf00549190

Google Scholar

[17] J. P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B. 23 (1981) 5048.

DOI: 10.1103/physrevb.23.5048

Google Scholar

[18] P. Giannozzi et al, Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials 2009, J. Phys.: Condens. Matter. 21 (2009) 395502.

Google Scholar

[19] S. Baroni, S. Gironcoli, A. Corso, and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73 (2001) 515.

DOI: 10.1103/revmodphys.73.515

Google Scholar

[20] R. B. Russel, On the Zr‐Hf System, J. Appl. Phys. 24 (1953) 232.

Google Scholar

[21] M. Potzschke and K. Schubert, On the Constitution of some T4-B3 Systems or Quasi-T4-B3 Systems, Z. Metallkde. 53 (1962) 548-561.

Google Scholar

[22] H. M. Otte, W. G. Montague and D. O. Welch, X‐Ray Diffractometer Determination of the Thermal Expansion Coefficient of Aluminum near Room Temperature, J. Appl. Phys. 34 (1963) 3149.

DOI: 10.21236/ad0410258

Google Scholar

[23] F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc Natl AcadSci (U S A). 30(9) (1944)244–247.

DOI: 10.1073/pnas.30.9.244

Google Scholar

[24] P.K. Jha, Phonon spectra and vibrational mode instability of MgCNi3, Phys. Rev. B. 72 (2005)214502.

Google Scholar

[25] P.K. Jha and S.P. Sanyal, A lattice dynamical study of the role of pressure on Raman modes in high-Tc HgBa2CuO4, Physica C. 261 (1996)259-262.

DOI: 10.1016/0921-4534(96)00148-7

Google Scholar

[26] P.K. Jha and S.P. Sanyal, Phonon spectrum and lattice specific heat of the HgBa2CuO4 high-temperature superconductor, Physica C. 271 (1996)6-10.

DOI: 10.1016/s0921-4534(96)00536-9

Google Scholar

[27] P.K. Jha and S.P. Sanyal, Lattice vibrations in Yb-pnictide compounds, Phys. Rev. B. 52 (1995)15898.

DOI: 10.1103/physrevb.52.15898

Google Scholar

[28] C. Lee and X. Gonze, Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 α-quartz and stishovite, Phys. Rev. B. 51 (1995)8610-8611.

DOI: 10.1103/physrevb.51.8610

Google Scholar

[29] V. Mankad, N. Rathod, S. D. Gupta, S. K. Gupta, P. K. Jha, Stable structure of platinum carbides: A first principles investigation on the structure, elastic, electronic and phonon properties, Mat. Phys. Chem. 129 (2011)816-822.

DOI: 10.1016/j.matchemphys.2011.05.014

Google Scholar