First Principles Study of Electronic, Lattice Dynamic, and Thermal Properties of Single Layer Phosphorene

Article Preview

Abstract:

Heat removal is a fundamental issue for continuous progress in the electronic industry and for the thermal management in electronic devices. Materials with high thermal conductivity may help in the elimination of excess heat more efficiently which is necessary for improving the device performance. Phosphorene is a 2D material that has been recently exfoliated mechanically. Using density functional theory, we presented the electronic, lattice dynamic, thermal and dielectric properties of phosphorene. It is found that sound velocity is larger along the zigzag direction signifying anisotropic thermal behaviour. The macroscopic dielectric constant calculated is also found to be anisotropic in nature. Finally, the variation of entropy and specific heat with temperature is obtained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

210-214

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Geim and I. Grigorieva, Nature 499, 419 (2013).

Google Scholar

[2] B. Radisavljevic, a Radenovic, J. Brivio, V. Giacometti, and a Kis, Nat. Nanotechnol. 6, 147 (2011).

Google Scholar

[3] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, ACS Nano 8, 1102 (2014).

Google Scholar

[4] W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, Appl. Phys. Lett. 93, 15 (2008).

Google Scholar

[5] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. Castro Neto, J. Leist, A. K. Geim, L. a. Ponomarenko, and K. S. Novoselov, Nano Lett. 12, 1707 (2012).

DOI: 10.1021/nl3002205

Google Scholar

[6] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, Phys. Rev. Lett. 108, 1 (2012).

DOI: 10.1103/physrevlett.108.155501

Google Scholar

[7] N. J. Roome and J. D. Carey, ACS Appl. Mater. Interfaces 6, 7743 (2014).

Google Scholar

[8] E. Bianco, S. Butler, S. Jiang, O. D. Restrepo, W. Windl, and J. E. Goldberger, ACS Nano 7, 4414 (2013).

DOI: 10.1021/nn4009406

Google Scholar

[9] G. Wang, R. Pandey, and S. P. Karna, Nanoscale 7, 524 (2014).

Google Scholar

[10] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).

Google Scholar

[11] F. B. Phosphorus, J. Wu, G. Kok, W. Koon, D. Xiang, C. Han, C. T. Toh, E. S. Kulkarni, I. Verzhbitskiy, A. Carvalho, A. S. Rodin, S. P. Koenig, and G. Eda, 8070 (2015).

DOI: 10.1021/acsnano.5b01922

Google Scholar

[12] H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. D. Ye, ACS Nano 8, 4033 (2014).

Google Scholar

[13] Y. Du, L. Han, Y. Deng, and P. D. Ye, ACS Nano 8, 10035 (2014).

Google Scholar

[14] A. N. Abbas, B. Liu, L. Chen, Y. Ma, S. Cong, N. Aroonyadet, and M. Ko, 5618 (2015).

Google Scholar

[15] J. Hu, Z. Guo, P. E. Mcwilliams, J. E. Darges, D. L. Druffel, A. M. Moran, and S. C. Warren, (2015).

Google Scholar

[16] N. Rudenko and M. I. Katsnelson, Phys. Rev. B - Condens. Matter Mater. Phys. 89, 1 (2014).

Google Scholar

[17] V. Tran, R. Soklaski, Y. Liang, and L. Yang, Phys. Rev. B 89, 235319 (2014).

Google Scholar

[18] W. Yu, Z. Zhu, C. -Y. Niu, C. Li, J. -H. Cho, and Y. Jia, Phys. Chem. Chem. Phys. 17, 16351 (2015).

Google Scholar

[19] R. a Doganov, E. C. T. O'Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. Castro Neto, and B. Özyilmaz, Nat. Commun. 6, 6647 (2015).

DOI: 10.1038/ncomms7647

Google Scholar

[20] S. P. Koenig, R. A. Doganov, H. Schmidt, A. H. Castro Neto, and B. Özyilmaz, Appl. Phys. Lett. 104, 4 (2014).

Google Scholar

[21] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, and Y. Zhang, Nat. Nanotechnol. 9, 372 (2014).

Google Scholar

[22] Y. Jing, Q. Tang, P. He, Z. Zhou, and P. Shen, Nanotechnology 26, 095201 (2015).

Google Scholar

[23] D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, arXiv 108, 1 (2014).

Google Scholar

[24] E. Pop, Nano Res. 3, 147 (2010).

Google Scholar

[25] D. L. Nika and A. a Balandin, J. Phys. Condens. Matter 24, 233203 (2012).

Google Scholar

[26] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009).

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[27] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

Google Scholar

[28] N. Troullier and J. L. Martins, Phys. Rev. B 43, 8861 (1991).

Google Scholar

[29] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

Google Scholar

[30] S. Baroni, S. de Gironcoli, A. D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 52 (2000).

Google Scholar

[31] A. Castellanos-Gomez, J. Phys. Chem. Lett. 4280 (2015).

Google Scholar

[32] J. Guan, Z. Zhu, and D. Tománek, Arxiv Prepr. 5 (2014).

Google Scholar

[33] S.K. Gupta, H.R. Soni and P.K. Jha, AIP Advances 3, 032117 (2013).

Google Scholar

[34] P.K. Jha, and H.R. Soni, J. of Appl. Phys. 115 (2), 023509 (2014).

Google Scholar

[35] H. R . Soni and P.K. Jha, AIP Advances 3, 032117 (2013).

Google Scholar

[36] Z. Ong, Y. Cai, G. Zhang, and Y. Zhang, J. Phys. Chem. 118, 25272 (2014).

Google Scholar