Microstructural Evolution in Ultrafine Grained FeMnSiCr Shape Memory Alloy Modules

Article Preview

Abstract:

High speed high pressure torsion (HSHPT) processing technology, engineered to achieving (ultra) fine bulk metallic structure under high pressure (~ GPa) and torsion by applying supplementary elevated rotation speed of superior anvil. Coned-disk spring shape modules were processed from an as cast Fe-28Mn-6Si-5Cr (mass %) shape memory alloy (SMA). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies revealed that the structure of modules became submicron as an effect of HSHPT processing. After severe plastic deformation, a grain size gradient was obtained along the truncated cone generator, increasing from inner to outer areas, due to different deformation degrees in these zones. The mechanical and shape memory properties was performed in order to relate the structural changes caused by severe plastic deformation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

214-220

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abramova, M. M., Enikeev, N. A., Kim, J. G., Valiev, R. Z., Karavaeva, M. V., and Kim, H. S., Structural and phase transformation in a TWIP steel subjected to high pressure torsion, Mater. Lett. 166 (2016) 321–324.

DOI: 10.1016/j.matlet.2015.12.095

Google Scholar

[2] An, X. H., Lin, Q. Y., Sha, G., Huang, M. X., Ringer, S. P., Zhu, Y. T., et al., Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion, Acta Mater. 109 (2016) 300–313.

DOI: 10.1016/j.actamat.2016.02.045

Google Scholar

[3] Cladera, A., Weber, B., Leinenbach, C., Czaderski, C., Shahverdi, M., and Motavalli, M., Iron-based shape memory alloys for civil engineering structures: An overview, Constr. Build. Mater. 63 (2014) 281–293.

DOI: 10.1016/j.conbuildmat.2014.04.032

Google Scholar

[4] Glezer, A. M., and Sundeev, R. V., General view of severe plastic deformation in solid state, Mater. Lett. 139 (2015) 455–457.

DOI: 10.1016/j.matlet.2014.10.052

Google Scholar

[5] Gurau, C., Gurau, G., Bujoreanu, L. G., and Fernandes, F. M. B., A Comparative Study of Austenitic Structure in NiTi and Fe Based Shape Memory Alloys after Severe Plastic Deformation, Mater. Today Proc. 2 (2015) S905–S908.

DOI: 10.1016/j.matpr.2015.07.428

Google Scholar

[6] Gurǎu, G., Gurǎu, C., Potecaşu, O., Alexandru, P., and Bujoreanu, L. G., Novel high-speed high pressure torsion technology for obtaining Fe-Mn-Si-Cr shape memory alloy active elements, J. Mater. Eng. Perform. 23 (2014) 2396–2402.

DOI: 10.1007/s11665-014-1060-2

Google Scholar

[7] Huang, P., Peng, H., Wang, S., Zhou, T., and Wen, Y., Relationship between martensitic reversibility and different nano-phases in a FeMnAlNi shape memory alloy, Mater. Charact. 118 (2016) 22–28.

DOI: 10.1016/j.matchar.2016.05.012

Google Scholar

[8] Jamaati, R., Reza Toroghinejad, M., and Edris, H., Fabrication of nanoparticle strengthened IF steel via ARB process, Mater. Sci. Eng. A 583 (2013) 20–24.

DOI: 10.1016/j.msea.2013.06.068

Google Scholar

[9] Kim, S. M., Arockiakumar, R., and Park, J. K., Effect of ECAE-processing on the thermo-mechanical behavior of Ti34wt. %Nb0. 14wt. %O shape memory alloy, Mater. Sci. Eng. A 546 (2012) 53–58.

DOI: 10.1016/j.msea.2012.03.023

Google Scholar

[10] Liu, Y., and Li, M., Nanocrystallization mechanism of beta phase in Ti-6Al-4V subjected to severe plastic deformation, Mater. Sci. Eng. A 669 (2016) 7–13.

DOI: 10.1016/j.msea.2016.05.088

Google Scholar

[11] López, G. A., López-Ferreño, I., Kilmametov, A. R., Breczewski, T., Straumal, B. B., Baretzky, B., et al., Severe Plastic Deformation on Powder Metallurgy Cu–Al–Ni Shape Memory Alloys, Mater. Today Proc. 2 (2015) S747–S750.

DOI: 10.1016/j.matpr.2015.07.390

Google Scholar

[12] Ma, J., Karaman, I., Kockar, B., Maier, H. J., and Chumlyakov, Y. I., Severe plastic deformation of Ti74Nb26 shape memory alloys, Mater. Sci. Eng. A 528 (2011) 7628–7635.

DOI: 10.1016/j.msea.2011.06.051

Google Scholar

[13] Min, X., Sawaguchi, T., Zhang, X., and Tsuzaki, K., Reasons for incomplete shape recovery in polycrystalline Fe–Mn–Si shape memory alloys, Scr. Mater. 67 (2012) 37–40.

DOI: 10.1016/j.scriptamat.2012.03.015

Google Scholar

[14] Nikulin, I., Sawaguchi, T., Kushibe, A., Inoue, Y., Otsuka, H., and Tsuzaki, K., Effect of strain amplitude on the low-cycle fatigue behavior of a new Fe–15Mn–10Cr–8Ni–4Si seismic damping alloy, Int. J. Fatigue 88 (2016) 132–141.

DOI: 10.1016/j.ijfatigue.2016.03.021

Google Scholar

[15] Peterlechner, M., Bokeloh, J., Wilde, G., and Waitz, T., Study of relaxation and crystallization kinetics of NiTi made amorphous by repeated cold rolling, Acta Mater. 58 (2010) 6637–6648.

DOI: 10.1016/j.actamat.2010.08.026

Google Scholar

[16] D. Ioniţă, M. Capoşi, I. Demetrescu, S. Ciucă, I. A. Gherghescu, Effect of artificial aging conditions on corrosion resistance of a TiNi alloy, Materials and Corrosion - Werkstoffe und Korrosion, (2014), 52-58.

DOI: 10.1002/maco.201307557

Google Scholar

[17] I.A. Gherghescu, M. Târcolea, G.L. Jicmon, C.V. Turcaş Heat Treatment Influence upon Precipitates Chemical Composition and Transformation Temperatures of a NiTi Shape Memory Alloy, Revista de Chimie, (2013), 64, 407 - 413.

Google Scholar

[18] Vlad Gabriel Vasilescu, Ion Patrascu, Cosmin Cotrut, Elisabeta Vasilescu, Experimental Research on the Behavior of the Ti10Zr Alloy in Environments Simulating Oral Environment, REV. CHIM. (Bucharest), 2016, 67(2), p.263.

Google Scholar

[19] Vlad Gabriel Vasilescu, Miruna Silvia Stan, Ion Patrascu, Anca Dinischiotu, Elisabeta Vasilescu, In Vitro Testing of Materials Biocompatibility with Controled Chemical Composition, Romanian Journal of Materials, 2015, 45 (4), p.315.

Google Scholar

[20] Rahimi, F., and Eivani, A. R., A new severe plastic deformation technique based on pure shear, Mater. Sci. Eng. A 626 (2015) 423–431.

DOI: 10.1016/j.msea.2014.12.024

Google Scholar

[21] Saito, T., Kapusta, C., and Takasaki, A., Synthesis and characterization of Fe–Mn–Si shape memory alloy by mechanical alloying and subsequent sintering, Mater. Sci. Eng. A 592 (2014) 88–94.

DOI: 10.1016/j.msea.2013.10.097

Google Scholar

[22] Sawaguchi, T., Nikulin, I., Ogawa, K., Sekido, K., Takamori, S., Maruyama, T., et al., Designing Fe–Mn–Si alloys with improved low-cycle fatigue lives, Scr. Mater. 99 (2015) 49–52.

DOI: 10.1016/j.scriptamat.2014.11.024

Google Scholar

[23] Shahmir, H., and Langdon, T. G., Characteristics of the allotropic phase transformation in titanium processed by high-pressure torsion using different rotation speeds, Mater. Sci. Eng. A 667 (2016) 293–299.

DOI: 10.1016/j.msea.2016.05.001

Google Scholar

[24] Stanford, N., Dunne, D. P., and Li, H., Re-examination of the effect of NbC precipitation on shape memory in Fe–Mn–Si-based alloys, Scr. Mater. 58 (2008) 583–586.

DOI: 10.1016/j.scriptamat.2007.11.018

Google Scholar

[25] Tseng, L. W., Ma, J., Wang, S. J., Karaman, I., Kaya, M., Luo, Z. P., et al., Superelastic response of a single crystalline FeMnAlNi shape memory alloy under tension and compression, Acta Mater. 89 (2015) 374–383.

DOI: 10.1016/j.actamat.2015.01.009

Google Scholar

[26] Yanushkevich, Z., Belyakov, A., Kaibyshev, R., Haase, C., and Molodov, D. A., Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel, Mater. Charact. 112 (2016) 180–187.

DOI: 10.1016/j.matchar.2015.12.021

Google Scholar

[27] Zhang, W., Wen, Y. -H., Li, N., and Huang, S. -K., Remarkable improvement of recovery stress of Fe–Mn–Si shape memory alloy fabricated by equal channel angular pressing, Mater. Sci. Eng. A 454-455 (2007) 19–23.

DOI: 10.1016/j.msea.2006.10.101

Google Scholar