[1]
H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, Comparison of dye degradation efficiency using ZnO powders with various size scales, J. Hazard. Mater. 141 (2007) 645-652.
DOI: 10.1016/j.jhazmat.2006.07.021
Google Scholar
[2]
N. M. Khatir, Z. Abdul-Malek, A. K. Zak, A. Akbari, F. Sabbagh, Sol–gel grown Fe-doped ZnO nanoparticles: antibacterial and structural behaviors, J Sol-Gel Sci Technol, (2016) DOI 10. 1007/s10971-015-3922-y.
DOI: 10.1007/s10971-015-3922-y
Google Scholar
[3]
S. Hong, T. Joo, W. Park, Y. Jun, G. C. Yi, Time-resolved photoluminescence of the size-controlled ZnO nanorods Appl. Phys. Lett. 83 (2003) 4157–4159.
DOI: 10.1063/1.1627472
Google Scholar
[4]
J. Schulz, H. Hohenberg, F. Pflucker, E. Gartnera, T. Willa, S. Pfeiffera, R. Wepf, V. Wendel, H. Gers- Barlag, K.P. Wittern, Distribution of sunscreens on skin, Adv. Drug Deliv. Rev. 54 (Suppl. 1) (2002) S157-163.
DOI: 10.1016/s0169-409x(02)00120-5
Google Scholar
[5]
A. Menga, X. Li, X. Wang, Z. Li, Preparation, photocatalytic properties and mechanism of Fe or N-dopedAg/ZnO nanocomposites, CERAM. INT. (2014), http: /dx. doi. org/10. 1016/j. ceramint. 2014. 01. 153.
Google Scholar
[6]
A. Hernández, L. Maya, E. Sánchez-Mora, E.M. Sánchez, Sol–gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO–Fe2O3, J. Sol–gel Sci. Technol. 42 (2007) 71–78.
DOI: 10.1007/s10971-006-1521-7
Google Scholar
[7]
A. Parra-Palomino, O. Perales-Perez, R. Singhal, M. Tomar, J. Hwang, P.M. Voyles, Structural, optical and magnetic characterization of monodisperse Fe-doped ZnO nanocrystals, J. Appl. Phys. 103 (2008) 07D121.
DOI: 10.1063/1.2834705
Google Scholar
[8]
R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194–200.
DOI: 10.1016/j.jhazmat.2007.12.033
Google Scholar
[9]
X.Q. Qiu, G.S. Li, X.F. Sun, L.P. Li, X.Z. Fu, Doping effects of Co ions on ZnO nanorods and their photocatalytic properties, Nanotechnology 19 (2008) 215703.
DOI: 10.1088/0957-4484/19/21/215703
Google Scholar
[10]
Y.C. Lu, Y.H. Lin, D.J. Wang, L.L. Wang, T.F. Xie, T.F. Jiang, A high performance cobalt-doped ZnO visible light photocatalyst and its photo- generated charge transfer properties, NanoRes. 4 (2011) 1144–1152.
DOI: 10.1007/s12274-011-0163-4
Google Scholar
[11]
C. Xu, L.X. Cao, G. Su, W. Liu, X.F. Qu, Y.Q. Yu, Preparation, characterization and photocatalytic activity of Co-doped ZnO powder, J. Alloys Compd. 497 (2010) 373–376.
DOI: 10.1016/j.jallcom.2010.03.076
Google Scholar
[12]
S.F. Chen, W. Zhao, S.J. Zhang, S.J. Zhang, Preparation, characterization and photocatalytic activity of N-containing ZnO powder, Chem. Eng. J. 148 (2009) 263–269.
Google Scholar
[13]
A.C. Dodd, A.J. McKinley, M. Saunders, T. Tsuzuki, Synthesis and characterization of doped ZnO photocatalysts, Microsc. Microanal. 11 (2005) 500–501.
DOI: 10.1017/s1431927605502976
Google Scholar
[14]
S. Moribe, T. Ikoma, K. Akiyama, Q. Zhang, F. Saito, S.T. Tubota, EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by a mechano chemical method, Chem. Phys. Lett. 436 (2007) 373.
DOI: 10.1016/j.cplett.2007.01.067
Google Scholar
[15]
D.Y. Wu, M.C. Long, W.M. Cai, C. Chen, Y.H. Wu, Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible- light activity, J. Alloys Compd. 502 (2010) 289–294.
DOI: 10.1016/j.jallcom.2010.04.189
Google Scholar
[16]
G. Zhou, J.C. Deng, Preparation and photocatalytic performance of Ag/ ZnO nano-composites, Mater. Sci. Semicond. Process. 10 (2007) 90–96.
Google Scholar
[17]
S. Patole, M. Islam, R.C. Aiyer, S.R. Mahamuni, Optical studies of ZnO/ Ag nanojunctions, J. Mater. Sci. 41 (2006) 5602–5607.
DOI: 10.1007/s10853-006-0296-0
Google Scholar
[18]
R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism, J. Phys. Chem. C 112 (2008) 13563–13570.
DOI: 10.1021/jp802729a
Google Scholar
[19]
Q. Wang, B.Y. Geng, S.Z. Wang, ZnO/Au hybrid nanoarchitectures: wet- chemical synthesis and structurally enhanced photocatalytic, Environ. Sci. Technol. 43 (2009) 8968–8973.
DOI: 10.1021/es902568h
Google Scholar
[20]
X.T. Yin, W.X. Que, D. Fei, F.Y. Shen, Q.S. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties, J. Alloys Compd. 524 (2012) 13–21.
DOI: 10.1016/j.jallcom.2012.02.052
Google Scholar
[21]
N. V. Kaneva, D.S. Dimitrov, C.D. Dushkin, Effect of nickel doping on the photocatalytic activity of ZnO thin films under UVand visible light, Appl. Surf. Sci. 257 (2011) 8113–8120.
DOI: 10.1016/j.apsusc.2011.04.119
Google Scholar
[22]
Y.B. Wang, Y.S. Wang, R.G. Jiang, R. Xu, Cobalt phosphate–ZnO composite photocatalysts for oxygen evolution from photocatalytic water oxidation, Ind. Eng. Chem. Res. 51 (2012) 9945–9951.
DOI: 10.1021/ie2027469
Google Scholar
[23]
N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study‖ Sci. Technol. Adv. Mater. 9, 2008. doi: 10. 1088/1468-6996/9/3/035004.
DOI: 10.1088/1468-6996/9/3/035004
Google Scholar
[24]
L. Xu, X. Li, Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method, J. Cryst. Growth, 312 (2010) 851-855.
DOI: 10.1016/j.jcrysgro.2009.12.062
Google Scholar
[25]
K. Kumar , M. Chitkara , I. S. Sandhu , D. Mehta , S. Kumar , Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route, Journal of Alloys and Compounds 588 (2014) 681–689.
DOI: 10.1016/j.jallcom.2013.11.127
Google Scholar
[26]
C.C. Wong, W. Chu, The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources, Chemosphere 50 (2003) 981–987.
DOI: 10.1016/s0045-6535(02)00640-9
Google Scholar
[27]
K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2, Appl. Catal. B: Environ. 48 (2004) 83–93.
DOI: 10.1016/j.apcatb.2003.09.013
Google Scholar
[28]
P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh, Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO 2 in a shallow pond slurry reactor, Dyes Pigments, 68 (2006) 53-60.
DOI: 10.1016/j.dyepig.2004.12.009
Google Scholar
[29]
A. Hagfeldt, M. Graetzel, Light-Induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49-68.
DOI: 10.1021/cr00033a003
Google Scholar
[30]
M. Busila, V. Musat, T. Textor, B. Mahltig, Synthesis and characterization of antimicrobial textile finishing based on Ag: ZnO nanoparticles/chitosan biocomposites, RSC Adv., 5 (2015) 21562–2157.
DOI: 10.1039/c4ra13918f
Google Scholar
[31]
O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 3 (2001) 643–646.
Google Scholar
[32]
N. Jones, B. Ray, R.T. Koodali, A C. Manna, Antibacterial activity of ZnO nanoparticles suspensions on a broad spectrum of microorganisms, FEMS Microbiol Lett. 279 (2008)71–76.
DOI: 10.1111/j.1574-6968.2007.01012.x
Google Scholar
[33]
N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles – an antibacterial study. Sci Technol Adv Mater. 9 (2008) 035004.
Google Scholar
[34]
R.K. Raghupati, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 27 (2011) 4020–4028.
DOI: 10.1021/la104825u
Google Scholar
[35]
A.T. Le, L.T. Tam, P.D. Tam, P.T. Huy, N.V. Hieu, A.A. Kudrinskiy, Y.A. Krityakov, Synthesis of oleic acid-stabilized silver nanoparticles an analysis of their antibacterial activity. Mater Sci Eng C. 30 (2010) 910–916.
DOI: 10.1016/j.msec.2010.04.009
Google Scholar
[36]
P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. Andrade, R.S. Cruz, E.A.A. Medreiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5 (2012) 1447–1464.
DOI: 10.1007/s11947-012-0797-6
Google Scholar
[37]
Y.J. Lin, X.Y. Xu, L. Huang, D.G. Evans, D.Q. Li, Bactericidal properties of ZnO-Al2O3 composites formed from layered double hydroxide precursors. J Mater Sci Mater Med. 20 (2009) 591–595.
DOI: 10.1007/s10856-008-3585-0
Google Scholar
[38]
A C. Manna, Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles. In: Cioffi N, Rai M, editors. Nano-antimicrobials: progress and prospects. Berlin: Springer Press; p.151–180, (2012).
DOI: 10.1007/978-3-642-24428-5_5
Google Scholar