Fe-Doped ZnO Nanoparticles: Structural, Morphological, Antimicrobial and Photocatalytic Characterization

Article Preview

Abstract:

Oxide semiconductors have attracted increasing interest due to their potential in solving environmental problems. ZnO-based nanoparticles (NPs) are among the most investigated for efficient disinfection and microbial control.Iron-doped zinc oxide nanoparticles (Fe:ZnO NPs) were successfully fabricated through precipitation method at low temperature followed by thermal treatment. The obtained Fe:ZnO NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and ultraviolet-visible (UV–Vis) spectroscopy. The effect of iron content on structural, morphological, antimicrobial and photocatalytic properties was investigated and discussed.The photocatalytic activity of the nanoparticles was tested by degradation of methylene blue (MB) solution under UV light for 60 min irradiation. The antibacterial activity was determined by paper disc method on Mueller-Hinton agar against the Gram-negative bacteria Escherichia coli (E. coli) and the Gram-positive bacteria Staphylococcus aureus (S. aureus) and compared to that of the undoped ZnO NPs. Consistent improvement on the photocatalytic and antimicrobial activity of Fe-doped ZnO nanoparticles was noticed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

233-239

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Wang, C. Xie, W. Zhang, S. Cai, Z. Yang, Y. Gui, Comparison of dye degradation efficiency using ZnO powders with various size scales, J. Hazard. Mater. 141 (2007) 645-652.

DOI: 10.1016/j.jhazmat.2006.07.021

Google Scholar

[2] N. M. Khatir, Z. Abdul-Malek, A. K. Zak, A. Akbari, F. Sabbagh, Sol–gel grown Fe-doped ZnO nanoparticles: antibacterial and structural behaviors, J Sol-Gel Sci Technol, (2016) DOI 10. 1007/s10971-015-3922-y.

DOI: 10.1007/s10971-015-3922-y

Google Scholar

[3] S. Hong, T. Joo, W. Park, Y. Jun, G. C. Yi, Time-resolved photoluminescence of the size-controlled ZnO nanorods Appl. Phys. Lett. 83 (2003) 4157–4159.

DOI: 10.1063/1.1627472

Google Scholar

[4] J. Schulz, H. Hohenberg, F. Pflucker, E. Gartnera, T. Willa, S. Pfeiffera, R. Wepf, V. Wendel, H. Gers- Barlag, K.P. Wittern, Distribution of sunscreens on skin, Adv. Drug Deliv. Rev. 54 (Suppl. 1) (2002) S157-163.

DOI: 10.1016/s0169-409x(02)00120-5

Google Scholar

[5] A. Menga, X. Li, X. Wang, Z. Li, Preparation, photocatalytic properties and mechanism of Fe or N-dopedAg/ZnO nanocomposites, CERAM. INT. (2014), http: /dx. doi. org/10. 1016/j. ceramint. 2014. 01. 153.

Google Scholar

[6] A. Hernández, L. Maya, E. Sánchez-Mora, E.M. Sánchez, Sol–gel synthesis, characterization and photocatalytic activity of mixed oxide ZnO–Fe2O3, J. Sol–gel Sci. Technol. 42 (2007) 71–78.

DOI: 10.1007/s10971-006-1521-7

Google Scholar

[7] A. Parra-Palomino, O. Perales-Perez, R. Singhal, M. Tomar, J. Hwang, P.M. Voyles, Structural, optical and magnetic characterization of monodisperse Fe-doped ZnO nanocrystals, J. Appl. Phys. 103 (2008) 07D121.

DOI: 10.1063/1.2834705

Google Scholar

[8] R. Ullah, J. Dutta, Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles, J. Hazard. Mater. 156 (2008) 194–200.

DOI: 10.1016/j.jhazmat.2007.12.033

Google Scholar

[9] X.Q. Qiu, G.S. Li, X.F. Sun, L.P. Li, X.Z. Fu, Doping effects of Co ions on ZnO nanorods and their photocatalytic properties, Nanotechnology 19 (2008) 215703.

DOI: 10.1088/0957-4484/19/21/215703

Google Scholar

[10] Y.C. Lu, Y.H. Lin, D.J. Wang, L.L. Wang, T.F. Xie, T.F. Jiang, A high performance cobalt-doped ZnO visible light photocatalyst and its photo- generated charge transfer properties, NanoRes. 4 (2011) 1144–1152.

DOI: 10.1007/s12274-011-0163-4

Google Scholar

[11] C. Xu, L.X. Cao, G. Su, W. Liu, X.F. Qu, Y.Q. Yu, Preparation, characterization and photocatalytic activity of Co-doped ZnO powder, J. Alloys Compd. 497 (2010) 373–376.

DOI: 10.1016/j.jallcom.2010.03.076

Google Scholar

[12] S.F. Chen, W. Zhao, S.J. Zhang, S.J. Zhang, Preparation, characterization and photocatalytic activity of N-containing ZnO powder, Chem. Eng. J. 148 (2009) 263–269.

Google Scholar

[13] A.C. Dodd, A.J. McKinley, M. Saunders, T. Tsuzuki, Synthesis and characterization of doped ZnO photocatalysts, Microsc. Microanal. 11 (2005) 500–501.

DOI: 10.1017/s1431927605502976

Google Scholar

[14] S. Moribe, T. Ikoma, K. Akiyama, Q. Zhang, F. Saito, S.T. Tubota, EPR study on paramagnetic species in nitrogen-doped ZnO powders prepared by a mechano chemical method, Chem. Phys. Lett. 436 (2007) 373.

DOI: 10.1016/j.cplett.2007.01.067

Google Scholar

[15] D.Y. Wu, M.C. Long, W.M. Cai, C. Chen, Y.H. Wu, Low temperature hydrothermal synthesis of N-doped TiO2 photocatalyst with high visible- light activity, J. Alloys Compd. 502 (2010) 289–294.

DOI: 10.1016/j.jallcom.2010.04.189

Google Scholar

[16] G. Zhou, J.C. Deng, Preparation and photocatalytic performance of Ag/ ZnO nano-composites, Mater. Sci. Semicond. Process. 10 (2007) 90–96.

Google Scholar

[17] S. Patole, M. Islam, R.C. Aiyer, S.R. Mahamuni, Optical studies of ZnO/ Ag nanojunctions, J. Mater. Sci. 41 (2006) 5602–5607.

DOI: 10.1007/s10853-006-0296-0

Google Scholar

[18] R. Georgekutty, M.K. Seery, S.C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism, J. Phys. Chem. C 112 (2008) 13563–13570.

DOI: 10.1021/jp802729a

Google Scholar

[19] Q. Wang, B.Y. Geng, S.Z. Wang, ZnO/Au hybrid nanoarchitectures: wet- chemical synthesis and structurally enhanced photocatalytic, Environ. Sci. Technol. 43 (2009) 8968–8973.

DOI: 10.1021/es902568h

Google Scholar

[20] X.T. Yin, W.X. Que, D. Fei, F.Y. Shen, Q.S. Guo, Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties, J. Alloys Compd. 524 (2012) 13–21.

DOI: 10.1016/j.jallcom.2012.02.052

Google Scholar

[21] N. V. Kaneva, D.S. Dimitrov, C.D. Dushkin, Effect of nickel doping on the photocatalytic activity of ZnO thin films under UVand visible light, Appl. Surf. Sci. 257 (2011) 8113–8120.

DOI: 10.1016/j.apsusc.2011.04.119

Google Scholar

[22] Y.B. Wang, Y.S. Wang, R.G. Jiang, R. Xu, Cobalt phosphate–ZnO composite photocatalysts for oxygen evolution from photocatalytic water oxidation, Ind. Eng. Chem. Res. 51 (2012) 9945–9951.

DOI: 10.1021/ie2027469

Google Scholar

[23] N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study‖ Sci. Technol. Adv. Mater. 9, 2008. doi: 10. 1088/1468-6996/9/3/035004.

DOI: 10.1088/1468-6996/9/3/035004

Google Scholar

[24] L. Xu, X. Li, Influence of Fe-doping on the structural and optical properties of ZnO thin films prepared by sol–gel method, J. Cryst. Growth, 312 (2010) 851-855.

DOI: 10.1016/j.jcrysgro.2009.12.062

Google Scholar

[25] K. Kumar , M. Chitkara , I. S. Sandhu , D. Mehta , S. Kumar , Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route, Journal of Alloys and Compounds 588 (2014) 681–689.

DOI: 10.1016/j.jallcom.2013.11.127

Google Scholar

[26] C.C. Wong, W. Chu, The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources, Chemosphere 50 (2003) 981–987.

DOI: 10.1016/s0045-6535(02)00640-9

Google Scholar

[27] K. Nagaveni, G. Sivalingam, M.S. Hegde, G. Madras, Solar photocatalytic degradation of dyes: high activity of combustion synthesized nano TiO2, Appl. Catal. B: Environ. 48 (2004) 83–93.

DOI: 10.1016/j.apcatb.2003.09.013

Google Scholar

[28] P. Toor, A. Verma, C.K. Jotshi, P.K. Bajpai, V. Singh, Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO 2 in a shallow pond slurry reactor, Dyes Pigments, 68 (2006) 53-60.

DOI: 10.1016/j.dyepig.2004.12.009

Google Scholar

[29] A. Hagfeldt, M. Graetzel, Light-Induced redox reactions in nanocrystalline systems, Chem. Rev. 95 (1995) 49-68.

DOI: 10.1021/cr00033a003

Google Scholar

[30] M. Busila, V. Musat, T. Textor, B. Mahltig, Synthesis and characterization of antimicrobial textile finishing based on Ag: ZnO nanoparticles/chitosan biocomposites, RSC Adv., 5 (2015) 21562–2157.

DOI: 10.1039/c4ra13918f

Google Scholar

[31] O. Yamamoto, Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 3 (2001) 643–646.

Google Scholar

[32] N. Jones, B. Ray, R.T. Koodali, A C. Manna, Antibacterial activity of ZnO nanoparticles suspensions on a broad spectrum of microorganisms, FEMS Microbiol Lett. 279 (2008)71–76.

DOI: 10.1111/j.1574-6968.2007.01012.x

Google Scholar

[33] N. Padmavathy, R. Vijayaraghavan, Enhanced bioactivity of ZnO nanoparticles – an antibacterial study. Sci Technol Adv Mater. 9 (2008) 035004.

Google Scholar

[34] R.K. Raghupati, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 27 (2011) 4020–4028.

DOI: 10.1021/la104825u

Google Scholar

[35] A.T. Le, L.T. Tam, P.D. Tam, P.T. Huy, N.V. Hieu, A.A. Kudrinskiy, Y.A. Krityakov, Synthesis of oleic acid-stabilized silver nanoparticles an analysis of their antibacterial activity. Mater Sci Eng C. 30 (2010) 910–916.

DOI: 10.1016/j.msec.2010.04.009

Google Scholar

[36] P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. Andrade, R.S. Cruz, E.A.A. Medreiros, Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5 (2012) 1447–1464.

DOI: 10.1007/s11947-012-0797-6

Google Scholar

[37] Y.J. Lin, X.Y. Xu, L. Huang, D.G. Evans, D.Q. Li, Bactericidal properties of ZnO-Al2O3 composites formed from layered double hydroxide precursors. J Mater Sci Mater Med. 20 (2009) 591–595.

DOI: 10.1007/s10856-008-3585-0

Google Scholar

[38] A C. Manna, Synthesis, characterization, and antimicrobial activity of zinc oxide nanoparticles. In: Cioffi N, Rai M, editors. Nano-antimicrobials: progress and prospects. Berlin: Springer Press; p.151–180, (2012).

DOI: 10.1007/978-3-642-24428-5_5

Google Scholar