The Effects of Sintering Atmosphere on the Fabrication of Transparent Polycrystalline YAG Ceramics

Article Preview

Abstract:

In this paper, a mixture of commercial Al2O3 and Y2O3 nanopowders was prepared according to the stoichiometric ratios of YAG (Y3Al5O12) with 0.5 wt% tetraethyl orthosilicate (TEOS) as a sintering aid. The effects of air and vacuum sintering atmosphere were examined on the phase transformation, densification, in-line transmission, microstructure evolution, grain size distribution, sintering trajectories, and grain growth map of the YAG ceramics. The results showed that all samples were pure YAG phase. Nearly pore-free microstructure (99.8%) and narrow grain size distribution (4-10 μm) with an average grain size of 7 μm was obtained for the sample sintered in the vacuum atmosphere, while both inner and inter pores with abnormal grain growth, wider grain size distribution (9-27 μm) with the average grain size of 12 μm were detected in air atmosphere. Also, the results showed that the specimens sintered in vacuum atmosphere had higher relative densities and smaller grain sizes at all sintering temperatures for 6 h. The maximum transmittance at 1064 nm of the YAG ceramics sintered at air and vacuum atmosphere was 26% and 68%, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-63

Citation:

Online since:

April 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Ikesue, I. Furusato and K. Kamata, , Fabrication of Polycrystalline, Transparent YAG Ceramics by a Solid‐State Reaction Method, Journal of the American Ceramic Society, 78 (1995), 225–228.

DOI: 10.1111/j.1151-2916.1995.tb08389.x

Google Scholar

[2] V. Lupei, A. Lupei, and A. Ikesue, Transparent polycrystalline ceramic laser materials, Optical Materials, 30 (2008), 1781-1786.

DOI: 10.1016/j.optmat.2008.03.003

Google Scholar

[3] G. Boulon, Fifty years of advances in solid-state laser materials, Optical Materials. 34 (2012), 499–512.

DOI: 10.1016/j.optmat.2011.04.018

Google Scholar

[4] J. Li, Y.B. Pan, Y.P. Zeng, W.B. Liu, B.X. Jiang, J.K. Guo, The history, development, and future prospects for laser ceramics: a review, International Journal of Refractory Metals and Hard Materials, 39 (2013) 44–52.

DOI: 10.1016/j.ijrmhm.2012.10.010

Google Scholar

[5] A. Ikesue, Y L. Aung, Synthesis and Performance of Advanced Ceramic Lasers, Journal of the American Ceramic Society, 89 (2006), 1936-1944.

DOI: 10.1111/j.1551-2916.2006.01043.x

Google Scholar

[6] A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, H. Opower, Scalable concept for diode-pumped high-power solid-state lasers, Applied Physics B: Lasers and Optics, 58 (1994), 365-372.

DOI: 10.1007/bf01081875

Google Scholar

[7] H. Yagi, T. Yanagitani, K. Takaichi, K. Ueda, A.A. Kaminskii, Characterizations and laser performances of highly transparent Nd3+:Y3Al5O12 laser ceramics, Optical Materials, 29 (2007), 1258-1262.

DOI: 10.1016/j.optmat.2006.01.033

Google Scholar

[8] J. Lu, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A. Kaminskii, Highly efficient 2% Nd: yttrium aluminum garnet ceramic laser, Applied Physics Letters, 77 (2000), 3707-3709.

DOI: 10.1063/1.1331091

Google Scholar

[9] X.L. Zhang, D. Liu, H. Liu, J.Y. Wang, H.M. Qin, Y.H. Sang, Microstructural characteristics of Nd:YAG powders leading to transparent ceramics, Journal of Rare Earths, 29 (2011), 585-591.

DOI: 10.1016/s1002-0721(10)60502-9

Google Scholar

[10] J. Li, Y.S. Wu, Y.B. Pan, W.B. Liu, L.P. Huang, J.K. Guo, Fabrication, Microstructure and properties of highly transparent Nd:YAG laser ceramics, Optical Materials, 31 (2008), 6–17.

DOI: 10.1016/j.optmat.2007.12.014

Google Scholar

[11] A.J. Stevenson, E.R. Kupp, G.L. Messing, Low temperature, transient liquid phase sintering of B2O3-SiO2-doped Nd:YAG transparent ceramics, Journal of Materials Research, 26 (2011), 1151–1158.

DOI: 10.1557/jmr.2011.45

Google Scholar

[12] L. Esposito, A.L. Costa, V. Medri, Reactive sintering of YAG-based materials using micrometer-sized powders, Journal of the European Ceramic Society, 28 (2008), 1065–1071.

DOI: 10.1016/j.jeurceramsoc.2007.09.006

Google Scholar

[13] L. Esposito, A. Piancastelli, Role of powder properties and shaping techniques on the formation of pore-free YAG materials, Journal of the European Ceramic Society, 29 (2009), 317–322.

DOI: 10.1016/j.jeurceramsoc.2008.03.047

Google Scholar

[14] A. Maître, C. Sallé, R. Boulesteix, J.F. Baumard, Y. Rabinovitch, Effect of silica on the reactive sintering of polycrystalline Nd:YAG ceramics, Journal of the American Ceramic Society, 91 (2008), 406–413.

DOI: 10.1111/j.1551-2916.2007.02168.x

Google Scholar

[15] R. Boulesteix, A. Maitre, J.F. Baumard, C. Salle, Y. Rabinovitch, Mechanism of the liquid-phase sintering for Nd:YAG ceramics, Optical Materials, 31 (2009), 711– 715.

DOI: 10.1016/j.optmat.2008.04.005

Google Scholar

[16] F. Tang, Y.G. Cao, W. Guo, Y.J. Chen, J.Q. Huang, Z.H. Deng, Z.G. Liu, Z. Huang, Fabrication and laser behavior of the Yb:YAG ceramic microchips, Optical Materials, 33 (2011), 1278–1282.

DOI: 10.1016/j.optmat.2011.02.049

Google Scholar

[17] J.G. Li, T. Ikegami, J.H. Lee, T. Mori, Low-temperature fabrication of transparent yttrium aluminum garnet (YAG) ceramics without additives, Journal of the American Ceramic Society, 83 (2000), 961–963.

DOI: 10.1111/j.1151-2916.2000.tb01305.x

Google Scholar

[18] Yu.L. Kopylov, V.B. Kravchenko, S.N. Bagayev, V.V. Shemet, A.A. Komarov, O.V. arban, A.A. Kaminskii, Development of Nd3+:Y3Al5O12 laser ceramics by high pressure colloidal slip-casting (HPCSC) method, Optical Materials, 31 (2009), 707–710.

DOI: 10.1016/j.optmat.2008.03.013

Google Scholar

[19] A. Ikesue, Y.L. Aung, Ceramic laser materials, Nature photonics, 2 (2008), 721–727.

DOI: 10.1038/nphoton.2008.243

Google Scholar

[20] Y. HUANG, D. JIANG, J. ZHANG, L. I. N. Qingling, Z.HUANG, Sintering of transparent Nd: YAG ceramics in oxygen atmosphere, Journal of Rare Earths, 31 (2013), 153-157.

DOI: 10.1016/s1002-0721(12)60250-6

Google Scholar

[21] Y. Huang, D. Jiang, J. Zhang, Q. Lin, Z. Huang, Sintering of transparent yttria ceramics in oxygen atmosphere, Journal of the American Ceramic Society,93 (2010) 2964-2967.

DOI: 10.1111/j.1551-2916.2010.03940.x

Google Scholar

[22] A. Ikesue, T. Kinoshita, K. Kamata, K. Yoshida, Fabrication and optical properties of high‐Performance polycrystalline Nd: YAG ceramics for solid‐State lasers, Journal of the American Ceramic Society, 78 (1995), 1033–1040.

DOI: 10.1111/j.1151-2916.1995.tb08433.x

Google Scholar

[23] S.H.‏ Lee, S. Kochawattana, G.L. Messing, J.Q. Dumm, G. Quarles, V. Castillo, Solid‐State Reactive Sintering of Transparent Polycrystalline Nd: YAG Ceramics, Journal of the American Ceramic Society, 89 (2006), 1945–(1950).

DOI: 10.1111/j.1551-2916.2006.01051.x

Google Scholar

[24] K. M. Kinsman, J. McKittrick, E. Sluzky, K. Hesse, Phase Development‏ and Luminescence in Chromium-Doped Yttrium Aluminum Garnet (YAG:Cr)‏ Phosphors,. Journal of the American Ceramic Society, 77 (1994), 2866–2872.

DOI: 10.1111/j.1151-2916.1994.tb04516.x

Google Scholar

[25] R. L. Coble,. Sintering alumina: effect of atmospheres.Journal of the American Ceramic Society, 45 (1962), 123-127.

DOI: 10.1111/j.1151-2916.1962.tb11099.x

Google Scholar