Hydrogen Permeation of Multi-Layered-Coatings

Article Preview

Abstract:

Using a substrate of AISI 316L austenitic stainless steel, which is used for components in high-pressure hydrogen systems, the hydrogen barrier properties of samples with single-layer coatings of TiC, TiN, and TiAlN as well as a multi-layered coating of TiAlN and TiMoN were evaluated. The ion plating method was used, and coating thicknesses of 2.0–2.6 μm were obtained. Hydrogen permeation tests were carried out under a differential hydrogen pressure of 400 kPa and at a temperature between 573 and 773 K, and the quantities of hydrogen that permeated the samples were measured. This study aimed at elucidating the relationship between the microstructures of the coatings and the hydrogen permeation properties. Coatings of TiC, TiN, TiAlN, and TiAlN/TiMoN facilitated reductions of the hydrogen permeabilities to 1/100 or less of that of the uncoated substrate. The samples coated with TiN and TiC that developed columnar crystals vertical to the substrate exhibited higher hydrogen permeabilities. The experiment confirmed that the coatings composed of fine crystal grains were highly effective as hydrogen barriers, and that this barrier property became even more efficient if multiple layers of the coatings were applied. The crystal grain boundaries of the coating and interfaces of each film in a multi-layered coating may serve as hydrogen trapping sites. We speculate that fine crystal structures with multiple crystal grain boundaries and multi-layered coating interfaces will contribute to the development of hydrogen barriers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-18

Citation:

Online since:

April 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross, K. E. Nygren, Hydrogen embrittlement understood, Metall. Trans. A 46, (2015) 2323-2341.

DOI: 10.1007/s11661-015-2836-1

Google Scholar

[2] C. D. Beachem, A New Model for Hydrogen-Assisted Cracking (Hydrogen Embrittlement,), Metall. Trans. 3, (1972) 437-451.

Google Scholar

[3] J. P. Hirth, Effects of Hydrogen on the Properties of Iron and Steel, Metall. Trans. A 11, (1980) 861-890.

Google Scholar

[4] M. Nagumo, M. Nakamura, K. Takai, Hydrogen Thermal Desorption Relevant to Delayed-Fracture Susceptibility of High-Strength Steels, Metall. Trans. A 32, (2001) 339-347.

DOI: 10.1007/s11661-001-0265-9

Google Scholar

[5] K. Takai, Y. Homma, K. Izutsu, M. Nagumo, Identification of Trapping Sites in High-Strength Steels by Secondary Ion Mass Spectrometry for Thermal Desorbed Hydrogen, J. Jpn. Inst. Met. 60, (1996) 1155-1162.

DOI: 10.2320/jinstmet1952.60.12_1155

Google Scholar

[6] M. B. Whiteman, A. R. Troiano, Hydrogen Embrittlement of Austenitic Stainless Steels, Corrosion 21, (1965) 53-56.

DOI: 10.5006/0010-9312-21.2.53

Google Scholar

[7] C. L. Briant, Hydrogen assisted cracking of type 304 stainless steel, Metall. Trans. A 10, (1979) 181-189.

DOI: 10.1007/bf02817627

Google Scholar

[8] S. Fukuyama, K. Yokogawa, K. Kubo, M. Araki, Fatigue Properties of Type 304 Stainless Steel in High Pressure Hydrogen at Room Temperature, Trans. Jpn. Int. Met. 26, (1985) 325-331.

DOI: 10.2320/matertrans1960.26.325

Google Scholar

[9] G. Han, J. He, S. Fukuyama, K. Yokogawa, Effect of Strain-Induced Martensite on Hydrogen Environment Embrittlement of Sensitized Austenitic Stainless Steels at Low Temperature, Acta Mater. 46, (1998) 4559-4570.

DOI: 10.1016/s1359-6454(98)00136-0

Google Scholar

[10] S. Osaki, D. Itoh, M. Nakai, SCC properties of 7050 series aluminum alloys in T6 and RRA tempers, J. JILM. 51 (2001) 222-227.

DOI: 10.2464/jilm.51.222

Google Scholar

[11] M. Ando, M. Senoo, M. Kanno, Environmental embrittlement in air of Al–Zn–Mg–Cu alloys with Cr or Zr , J. Jpn. Inst. Light Met. 57, 19 (2007)19-24.

DOI: 10.2464/jilm.57.19

Google Scholar

[12] G. A. Young Jr., J. R. Scully, The effects of test temperature, temper, and alloyed copper on the hydrogen-controlled crack growth rate of an Al-Zn-Mg-(Cu) alloy, Metall. Trans. A 33, 101 (2002) 101-115.

DOI: 10.1007/s11661-002-0009-5

Google Scholar

[13] C. San Marchi, B. P. Somerday, S. L. Robinson, Permeability, solubility and diffusivity of hydrogen isotopes in stainless steel, Int. J. Hydrogen Energy 32, (2007)100-116.

DOI: 10.1016/j.ijhydene.2006.05.008

Google Scholar

[14] S. K. Lee, H. S. Kim, S. J. Noh, Hydrogen Permeability, Diffusivity, and Solubility of SUS 316L Stainless Steel in the Temperature Range 400 to 800 ℃ for Fusion Reactor Applications, J. Korean Phys. Soc. 5, (2011) 3019-3023.

DOI: 10.3938/jkps.59.3019

Google Scholar

[15] K. Horikawa, H. Okada, H. Kobayashi, W. Urushihara, ydrogen Permeation Estimated by HMT in Carbon Steel Exposed to Gaseous Hydrogen, J. Jpn. Inst. Met 74, (2010) 199-204.

DOI: 10.2320/jinstmet.74.199

Google Scholar

[16] M. Tamura, K. Shibata, Evaluation of Mechanical Properties of Metals at 45 MPa Hydrogen, J. Jpn. Inst. Met. 69, (2005) 1039-1048.

Google Scholar

[17] M. Tamura, M. Noma, M. Yamashita, Characteristic Change of Hydrogen Permeation in Stainless Steel Plate by BN Coating, Surf. Coat. Technol. 260, (2014) 148-154.

DOI: 10.1016/j.surfcoat.2014.09.041

Google Scholar

[18] J. Yamabe, S. Matsuoka, Y. Murakami, Surface Coating with a High Resistance to Hydrogen Entry under High-Pressure Hydrogen-Gas Environment, Int. J. Hydrogen Energy 38, (2013) 10141-10154.

DOI: 10.1016/j.ijhydene.2013.05.152

Google Scholar

[19] M. Tamura, Hydrogen Permeation Characteristics of TiN-Coated Stainless Steels, J. Mat. Sci. Eng. A 5 (5-6) (2015) 197-201.

Google Scholar

[20] R. G. Song, Hydrogen permeation resistance of plasma-sprayed Al2O3 and Al2O3–13wt.% TiO2 ceramic coatings on austenitic stainless steel, Surf. Coat. Technol. 168, 191 (2003) 191-194.

DOI: 10.1016/s0257-8972(03)00002-1

Google Scholar

[21] T. Chikada, A. Suzuki, Z. Yao, D. Levchuk, H. Mainer, T. Terai, T. Muroga, Surface Behavior in Deuterium Permeation through Erbium Oxide Coating, Fusion Eng. Des. 84, (2009) 590-592.

DOI: 10.1016/j.fusengdes.2008.12.030

Google Scholar

[22] G. W. Hollenberg, E. P. Simonen, G. Kalinin, A. Terlain, Tritium/Hydrogen Barrier Development, Fusion Eng. Des. 28, (1995) 190-208.

DOI: 10.1016/0920-3796(95)90039-x

Google Scholar

[23] J. A. Thornton, Influence of Apparatus Geometry and Deposition Conditions on the Structure and Topography of Thick Sputtered Coatings, J. Vac. Sci. Technol. 11, (1974) 666-67.

DOI: 10.1116/1.1312732

Google Scholar

[24] J. A. Thornton, High Rate Thick Film Growth, Ann. Rev. Mater. Sci. 7, (1977) 239-260.

Google Scholar

[25] J. W. Evans, P. A. Thiel. M. C. Bartelt, Morphological evolution during epitaxial thin film growth, Surf. Sci. Rep. 61, (2006) 1-128.

DOI: 10.1016/j.surfrep.2005.08.004

Google Scholar

[26] J. L. Plawsky, A. G. Fedorov, S. V. Garimella, H. B. Ma, S. C. Maroo, L. Chen, Y. Nam, Nano- and Microstructures for Thin-Film Evaporation—A Review, Nanoscale and Microscale Themophys. Eng. 18, (2014) 251-269.

DOI: 10.1080/15567265.2013.878419

Google Scholar

[27] D. A. Kiselev, I. K. Bdikin, E. K. Selezneva, K. Bormanis, A. Sternberg, A. L. Kholkin, Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy, J. Phys. D: Appl. Phys. 40, (2007) 7109-7112.

DOI: 10.1088/0022-3727/40/22/037

Google Scholar

[28] B. S. Lamsal, M. Dubey, V. Swaminathan, Y. Huh, D. Galipeau, Q. Qiao, Q. H. Fan, Nanoscale Investigation of Grain Growth in RF-Sputtered Indium Tin Oxide Thin Films by Scanning Probe Microscopy, J. Mater. 11, (2014) 3965-3972.

DOI: 10.1007/s11664-014-3212-4

Google Scholar

[29] P. Y. Huang, C. S. Ruiz-Vargas, A. M van der Zande, W. S. Whitney, M. P. Levendorf, J. W. Kevek, S. Garg, J. A. Alden, C. J. Hustedt, Y. Zhu, J. Park, P. L. McEuen, D. A. Muller, Grains and grain boundaries in single-layer graphene atomic patchwork quilts, Nature 469, (2011) 389-392.

DOI: 10.1038/nature09718

Google Scholar

[30] S. Choi, J. Heo, D. Kim, I. Chung, Ferroelectric properties of nano-size PZT grains determined by surface potential utilizing Kelvin force microscopy, Thin Solid Films 464-465, 277 (2004) 277-281.

DOI: 10.1016/j.tsf.2004.06.081

Google Scholar

[31] S. A. Stern, The Barrer, Permeability Unit, J. Polym. Sci., Part A-2 6, (1968) 1933-1934.

Google Scholar

[32] JIS K7126-2:2006 (Japanese Industrial Standards Committee).

Google Scholar

[33] ISO15105-1:2007 (International Organization for Standardization).

Google Scholar

[34] D. Gaude-Fugarolas, Proceedings of METAL, Effect of microstructure and trap typology on hydrogen redistribution in steel, Brno. Czech Repubulic, EC (2013) 15-17.

Google Scholar

[35] R. Koyama, G. Itoh, Hydrogen emission at grain boundaries in tensile-deformed Al−9%Mg alloy by hydrogen microprint technique, Trans. Nonferrous Met. Soc. China 24, (2014) 2102-2106.

DOI: 10.1016/s1003-6326(14)63318-5

Google Scholar

[36] A. Oudriss, J. Creus, J. Bouhattate, E. Conforto, C. Berziou, C. Savall, X. Feaugas, Grain Size and Grain-Boundary Effects on Diffusion and Trapping of Hydrogen in Pure Nickel, Acta Mater. 60, (2012) 6814-6828.

DOI: 10.1016/j.actamat.2012.09.004

Google Scholar

[37] N. Yazdipour, D. Dunne, E. Perelome, Effect of Grain Size on the Hydrogen Diffusion Process in Steel Using Cellular Automaton Approach, Mater. Sci. Forum 706-709, (2012) 1568-1573.

DOI: 10.4028/www.scientific.net/msf.706-709.1568

Google Scholar