Laser Metal Deposition of Fe- and Co-Based Shape-Memory Alloys

Article Preview

Abstract:

In the present study, Iron-based FeMnAlNi and Cobalt-based CoNiGa shape-memory alloys (SMA) were processed by laser metal deposition for the first time. The materials show susceptibility to cracking upon processing when unheated substrates are employed. Pre-heating of the substrate materials eliminated cracking completely and enabled robust deposition of thin-wall structures. Microstructural analysis using optical microscopy revealed different microstructural evolution for the two materials considered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-112

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Otsuka, Hg., Shape memory materials, 1. Aufl. Cambridge: Cambridge Univ. Press, (1999).

Google Scholar

[2] N.B. Morgan, Medical shape memory alloy applications—the market and its products,, Materials Science and Engineering: A, Jg. 378, 1-2, S. 16–23, (2004).

DOI: 10.1016/j.msea.2003.10.326

Google Scholar

[3] D. C. Lagoudas, Shape memory alloys: Modeling and engineering applications. New York, NY: Springer, (2008).

Google Scholar

[4] S. Langbein und A. Czechowicz, Konstruktionspraxis Formgedächtnistechnik: Potentiale - Auslegung - Beispiele. Wiesbaden, s.l.: Springer Fachmedien Wiesbaden, (2013).

DOI: 10.1007/978-3-8348-2343-4

Google Scholar

[5] A. Ölander, AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS,, J. Am. Chem. Soc., Jg. 54, Nr. 10, S. 3819–3833, (1932).

DOI: 10.1021/ja01349a004

Google Scholar

[6] W.J. Buehler, J.V. Gilfrich und R.C. Wiley, Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi,, Journal of Applied Physics, Jg. 34, Nr. 5, S. 1475–1477, (1963).

DOI: 10.1063/1.1729603

Google Scholar

[7] C.M. Jackson, H.J. Wagner und R.J. Wasilewski, 55-Nitinol - The Alloys with a Memory: Its physical metallurgy, properties, and applications. A report. [Online] Verfügbar unter: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720022818.pdf. Zugriff am: 3. Dezember (2019).

Google Scholar

[8] M.N. Mokgalaka, S.L. Pityana, P.A.I. Popoola und T. Mathebula, NiTi Intermetallic Surface Coatings by Laser Metal Deposition for Improving Wear Properties of Ti-6Al-4V Substrates,, Advances in Materials Science and Engineering, Jg. 2014, Nr. 10, S. 1–8, (2014).

DOI: 10.1155/2014/363917

Google Scholar

[9] T.E. Abioye, P.K. Farayibi, P. Kinnel und A.T. Clare, Functionally graded Ni-Ti microstructures synthesised in process by direct laser metal deposition,, Int J Adv Manuf Technol, Jg. 79, 5-8, S. 843–850, (2015).

DOI: 10.1007/s00170-015-6878-8

Google Scholar

[10] M.N. MOKGALAKA, A.P.I. POPOOLA und S.L. Pityana, In situ laser deposition of NiTi intermetallics for corrosion improvement of Ti–6Al–4V alloy,, Transactions of Nonferrous Metals Society of China, Jg. 25, Nr. 10, S. 3315–3322, (2015).

DOI: 10.1016/s1003-6326(15)63989-9

Google Scholar

[11] S. Khademzadeh, F. Zanini, P.F. Bariani und S. Carmignato, Precision additive manufacturing of NiTi parts using micro direct metal deposition,, Int J Adv Manuf Technol, Jg. 96, 9-12, S. 3729–3736, (2018).

DOI: 10.1007/s00170-018-1822-3

Google Scholar

[12] S. Dadbakhsh, M. Speirs, J. van Humbeeck und J.-P. Kruth, Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications,, MRS Bull., Jg. 41, Nr. 10, S. 765–774, (2016).

DOI: 10.1557/mrs.2016.209

Google Scholar

[13] Y.U.N. Koval, V. V. Kokorin und L. G. Khandros, The shape-memory effect in iron–nickel–cobalt–titanium alloys,, Fiz Met Metalloved, Jg. 48, Nr. 6, S. 1309–1311, (1979).

Google Scholar

[14] A. Sato, K. Soma, E. Chishima und T. Mori, Shape memory effect and mechanical behaviour of an Fe-30Mn-1Si alloy single crystal,, J. Phys. Colloques, Jg. 43, C4, C4-797-C4-802, (1982).

DOI: 10.1051/jphyscol:19824130

Google Scholar

[15] T. Omori et al., Superelastic effect in polycrystalline ferrous alloys, (eng), Science (New York, N.Y.), Jg. 333, Nr. 6038, S. 68–71, (2011).

DOI: 10.1126/science.1202232

Google Scholar

[16] T. Niendorf et al., Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting,, Metall and Mat Trans A, Jg. 47, Nr. 6, S. 2569–2573, (2016).

DOI: 10.1007/s11661-016-3412-z

Google Scholar

[17] M. Wuttig, J. Li und C. Craciunescu, A new ferromagnetic shape memory alloy system,, Scripta Materialia, Jg. 44, Nr. 10, S. 2393–2397, (2001).

DOI: 10.1016/s1359-6462(01)00939-3

Google Scholar

[18] J. Dadda, H.J. Maier, I. Karaman, H.E. Karaca und Y.I. Chumlyakov, Pseudoelasticity at elevated temperatures in [001] oriented Co49Ni21Ga30 single crystals under compression,, Scripta Materialia, Jg. 55, Nr. 8, S. 663–666, (2006).

DOI: 10.1016/j.scriptamat.2006.07.005

Google Scholar

[19] T. Niendorf et al., Martensite aging – Avenue to new high temperature shape memory alloys,, Acta Materialia, Jg. 89, S. 298–304, (2015).

DOI: 10.1016/j.actamat.2015.01.042

Google Scholar

[20] P. Krooß et al., Cyclic Degradation of Co49Ni21Ga30 High-Temperature Shape Memory Alloy: On the Roles of Dislocation Activity and Chemical Order,, Shap. Mem. Superelasticity, Jg. 2, Nr. 1, S. 37–49, (2016).

DOI: 10.1007/s40830-015-0049-5

Google Scholar

[21] C. Lauhoff et al., Pathways Towards Grain Boundary Engineering for Improved Structural Performance in Polycrystalline Co–Ni–Ga Shape Memory Alloys,, Shap. Mem. Superelasticity, Jg. 5, Nr. 1, S. 73–83, (2019).

DOI: 10.1007/s40830-018-00204-3

Google Scholar

[22] M. Vollmer et al., Damage evolution in pseudoelastic polycrystalline Co–Ni–Ga high-temperature shape memory alloys,, Journal of Alloys and Compounds, Jg. 633, S. 288–295, (2015).

DOI: 10.1016/j.jallcom.2015.01.282

Google Scholar

[23] J. Dadda et al., Pseudoelasticity and Cyclic Stability in Co49Ni21Ga30 Shape-Memory Alloy Single Crystals at Ambient Temperature,, Metall and Mat Trans A, Jg. 39, Nr. 9, S. 2026–2039, (2008).

DOI: 10.1007/s11661-008-9543-0

Google Scholar

[24] E. Karsten et al., Tailoring the Microstructure in Polycrystalline Co–Ni–Ga High-Temperature Shape Memory Alloys by Hot Extrusion,, Shap. Mem. Superelasticity, Jg. 5, Nr. 1, S. 84–94, (2019).

DOI: 10.1007/s40830-019-00208-7

Google Scholar

[25] T. Niendorf et al., Direct microstructure design by hot extrusion – High-temperature shape memory alloys with bamboo-like microstructure,, Scripta Materialia, Jg. 162, S. 127–131, (2019).

DOI: 10.1016/j.scriptamat.2018.10.051

Google Scholar

[26] E. Chauvet et al., Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting,, Acta Materialia, Jg. 142, S. 82–94, (2018).

DOI: 10.1016/j.actamat.2017.09.047

Google Scholar

[27] S.M. Ueland und C.A. Schuh, Superelasticity and fatigue in oligocrystalline shape memory alloy microwires,, Acta Materialia, Jg. 60, Nr. 1, S. 282–292, (2012).

DOI: 10.1016/j.actamat.2011.09.054

Google Scholar

[28] S.M. Ueland, Y. Chen und C.A. Schuh, Oligocrystalline Shape Memory Alloys,, Adv. Funct. Mater., Jg. 22, Nr. 10, S. 2094–2099, (2012).

DOI: 10.1002/adfm.201103019

Google Scholar

[29] T. Omori et al., Abnormal grain growth induced by cyclic heat treatment, (eng), Science (New York, N.Y.), Jg. 341, Nr. 6153, S. 1500–1502, (2013).

DOI: 10.1126/science.1238017

Google Scholar

[30] J.-X. Xie, J.-L. Liu und H.-Y. Huang, Structure design of high-performance Cu-based shape memory alloys,, Rare Met., Jg. 34, Nr. 9, S. 607–624, (2015).

DOI: 10.1007/s12598-015-0557-7

Google Scholar

[31] T. Omori, M. Okano und R. Kainuma, Effect of grain size on superelasticity in Fe-Mn-Al-Ni shape memory alloy wire,, APL Materials, Jg. 1, Nr. 3, S. 32103, (2013).

DOI: 10.1063/1.4820429

Google Scholar

[32] L.W. Tseng et al., Effect of grain size on the superelastic response of a FeMnAlNi polycrystalline shape memory alloy,, Scripta Materialia, Jg. 125, S. 68–72, (2016).

DOI: 10.1016/j.scriptamat.2016.07.036

Google Scholar

[33] M. Vollmer et al., Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys — The role of grain orientation,, Scripta Materialia, Jg. 114, S. 156–160, (2016).

DOI: 10.1016/j.scriptamat.2015.12.007

Google Scholar

[34] M. Vollmer et al., On the effect of gamma phase formation on the pseudoelastic performance of polycrystalline Fe–Mn–Al–Ni shape memory alloys,, Scripta Materialia, Jg. 108, S. 23–26, (2015).

DOI: 10.1016/j.scriptamat.2015.06.013

Google Scholar