[1]
W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A. M. Rubenchik. Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. Journal of Materials Processing Technology, (2014).
DOI: 10.1016/j.jmatprotec.2014.06.005
Google Scholar
[2]
I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov. Single track formation in selective laser melting of metal powders. Journal of Materials Processing Technology, Vol. 210(12):1624-1631, (2010).
DOI: 10.1016/j.jmatprotec.2010.05.010
Google Scholar
[3]
A.V. Gusarov, S.N. Grigoriev, M.A. Volosova, Y.A. Melnik, A. Laskin, D.V. Kotoban, and A.A. Okunkova. On productivity of laser additive manufacturing. Journal of Materials Processing Technology, (2018).
DOI: 10.1016/j.jmatprotec.2018.05.033
Google Scholar
[4]
H. Schleifenbaum, W. Meiners, and K. Wissenbach. Towards rapid manufacturing for series production: an ongoing process report on increasing the build rate of selective laser melting (slm). In International Conference on Rapid Prototyping & Rapid Tooling & Rapid Manufacturing, Berlin, Germany, (2008).
DOI: 10.1201/b15961-54
Google Scholar
[5]
M. Rasch, C. Roider, S. Kohl, J. Strauß, N. Maurer, K. Y. Nagulin, and M. Schmidt. Shaped laser beam profiles for heat conduction welding of aluminium-copper alloys. Optics and Lasers in Engineering, Vol. 115:179-189, (2019).
DOI: 10.1016/j.optlaseng.2018.11.025
Google Scholar
[6]
M. Slodczyk, A. Ilin, T. Kiedrowski, and V. Ploshikhin. Influence of multi-spot exposure of powder bed on melt pool stability in selective laser melting. In Laser 3D Manufacturing VI, Vol. 10909. International Society for Optics and Photonics, (2019).
DOI: 10.1117/12.2508210
Google Scholar
[7]
T.W. Eagar and N.S. Tsai. Temperature fields produced by traveling distributed heat sources. Welding journal, Vol. 62(12):346-355, (1983).
Google Scholar
[8]
F. Verhaeghe, T. Craeghs, J. Heulens, and L. Pandelaers. A pragmatic model for selective laser melting with evaporation. Acta Materialia, Vol. 57(20):6006-6012, (2009).
DOI: 10.1016/j.actamat.2009.08.027
Google Scholar
[9]
R. Fabbro. Scaling laws for the laser welding process in keyhole mode. Journal of Materials Processing Technology, Vol. 264:346-351, (2019).
DOI: 10.1016/j.jmatprotec.2018.09.027
Google Scholar
[10]
A.M. Rubenchik, W.E. King, S.S. Wu. Scaling laws for the additive manufacturing. Journal of Materials Processing Technology, Vol. 257:234-243, (2018).
DOI: 10.1016/j.jmatprotec.2018.02.034
Google Scholar
[11]
D. Rosenthal. The theory of moving sources of heat and its application of metal treatments. Transactions of ASME, Vol. 68:849-866, (1946).
DOI: 10.1115/1.4018626
Google Scholar
[12]
D. Mikhaylov, T. Kiedrowski, and A. F. Lasagni. Heat accumulation ef- fects during ultrashort pulse laser ablation with spatially shaped beams. Journal of Laser Mi- cro/Nanoengineering, Vol. 13(2), (2018).
DOI: 10.2961/jlmn.2018.02.0008
Google Scholar
[13]
V., Michailov, V. Karkhin, P. Petrov. Principles of welding. St. Petersburg: Polytechnic University Publishing, 2016, pp.107-109.
Google Scholar
[14]
C. Limmaneevichitr and S. Kou. Experiments to simulate effect of marangoni convection on weld pool shape. Welding Journal -New York-, Vol. 79(8), (2000).
Google Scholar