[1]
L.C. Zhang, H. Attar, Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review, Adv. Eng. Mater. 4(2016)463-475.
DOI: 10.1002/adem.201500419
Google Scholar
[2]
E. Brusa, R. Sesana, E. Ossola, Numerical modeling and testing of mechanical behavior of AM Titanium alloy bracket for aerospace applications, Procedia Struct. Integr. 5(2017)753-760.
DOI: 10.1016/j.prostr.2017.07.166
Google Scholar
[3]
A. Olleak, Z. Xi, Finite Element Modeling of the Selective Laser Melting Process for Ti-6Al-4V, in:Proceedings of the Solid Freeform Fabrication Symposium, (2018)13-15.
Google Scholar
[4]
B. Song, S. Dong, H. Liao, C. Coddet, Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering, Int. J. Adv. Manu. Technol. 61(2012)967-974.
DOI: 10.1007/s00170-011-3776-6
Google Scholar
[5]
H. Gong, H. Gu, K. Zeng, J. Dilip, D. Pal, B. Stucker, J.J. Lewandowski, Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder, in: Solid freeform fabrication symposium, (2014)256-267.
Google Scholar
[6]
T. Zhang, H. Li, S. Liu, S. Shen, H. Xie, W. Shi, M. Wei, Evolution of molten pool during selective laser melting of Ti-6Al-4V, J. Phys. D Appl. Phys. 52(2018)055302.
DOI: 10.1088/1361-6463/aaee04
Google Scholar
[7]
C.H. Fu, Y.B. Guo, Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V, J. Manuf. Sci. Eng. 136(2014)061004.
DOI: 10.1115/1.4028539
Google Scholar
[8]
Y. Li, D. Gu, Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study, Addi. Manuf. 1(2014)99-109.
DOI: 10.1016/j.addma.2014.09.001
Google Scholar
[9]
C. Panwisawas, C. Qiu, M.J. Anderson, Y.Sovani, R.P. Turner, M.M. Attallah, H.C. Basoalto, Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution, Comp. Mater. Sci. 126(2017)479-490.
DOI: 10.1016/j.commatsci.2016.10.011
Google Scholar
[10]
T. Özel, Y.M. Arısoy, L.E. Criales, Computational simulation of thermal and spattering phenomena and microstructure in selective laser melting of Inconel 625, Phys. Procedia 83(2016)1435- 1443.
DOI: 10.1016/j.phpro.2016.08.149
Google Scholar
[11]
L. Parry, I.A. Ashcroft, R.D. Wildman, Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation, Additive Manuf. 12(2016)1-15.
DOI: 10.1016/j.addma.2016.05.014
Google Scholar
[12]
B. Cheng, J. Lydon, K. Cooper, V. Cole, P. Northrop, K. Chou, Melt pool sensing and size analysis in laser powder-bed metal additive manufacturing, J Manuf. Process. 32(2018)744-753.
DOI: 10.1016/j.jmapro.2018.04.002
Google Scholar
[13]
J.R. Zhuang, Y.T. Lee, W.H. Hsieh, A.S. Yang, Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder, Optics & Laser Technol. 103(2018)59-76.
DOI: 10.1016/j.optlastec.2018.01.013
Google Scholar
[14]
V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.V. Orlov, The effect of layer thickness at selective laser melting, Procedia Eng. 174(2017)126-134.
DOI: 10.1016/j.proeng.2017.01.179
Google Scholar
[15]
M.R. Yavari, K.D. Cole, P.K. Rao, Design Rules for Additive Manufacturing-Understanding the Fundamental Thermal Phenomena to Reduce Scrap, Procedia Manuf. 33(2019)375-382.
DOI: 10.1016/j.promfg.2019.04.046
Google Scholar
[16]
S. Dadbakhsh, L. Hao, Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.% Fe2O3 powder consolidated parts, Sci. world J. (2014)2014.[17] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S.I. Golabi, Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed, Mater. Des. 89(2016)255-263.
DOI: 10.1016/j.matdes.2015.10.002
Google Scholar
[18]
A.K. Mishra, A. Aggarwal, A. Kumar, N. Sinha, Identification of a suitable volumetric heat source for modelling of selective laser melting of Ti6Al4V powder using numerical and experimental validation approach, Inter. J. Adv. Manuf. Technol. 99(2018)2257-2270.
DOI: 10.1007/s00170-018-2631-4
Google Scholar
[19]
E. Kundakcıoğlu, I. Lazoglu, Ö.Poyraz, E. Yasa, N. Cizicioğlu, Thermal and molten pool model in selective laser melting process of Inconel 625, Inter. J. Adv. Manuf. Technol. 95(2018)3977- 3984.
DOI: 10.1007/s00170-017-1489-1
Google Scholar
[20]
S. Jagatap, S.A. Nassar, A. Razavykia, B. Giovanni, Process variable effect on the strength of autoclave-bonded film adhesive joints, J. Adhes. Sci. Technol. 33(2019)715-735.
DOI: 10.1080/01694243.2018.1559436
Google Scholar
[21]
A. Razavykia, S. Farahany, N.M. Yusof, Evaluation of cutting force and surface roughness in the dry turning of Al-Mg2Si in-situ metal matrix composite inoculated with bismuth using DOE approach, Measurement 76(2015)170-182.
DOI: 10.1016/j.measurement.2015.08.032
Google Scholar
[22]
D.C. Montgomery, Introduction to statistical quality control, John Wiley & Sons, New York, (2009).
Google Scholar
[23]
A. Razavykia, N.M. Yusof, M.R. Yavari, Determining the effects of machining parameters and modifier on surface roughness in dry turning of Al-20% Mg2Si-PMMC using design of experiments (DOE), Procedia Manuf. 2(2015)280-285.
DOI: 10.1016/j.promfg.2015.07.049
Google Scholar
[24]
S.A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol. 214(2014)2627-2636.
DOI: 10.1016/j.jmatprotec.2014.06.001
Google Scholar
[25]
H. Ali, H. Ghadbeigi, K. Mumtaz, Residual stress development in selective laser-melted Ti6Al4V: A parametric thermal modelling approach, Int. J. Adv. Manuf. Technol. 97(2018)2621- 2633.
DOI: 10.1007/s00170-018-2104-9
Google Scholar
[26]
A. Sola, A. Nouri, Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion, J. Adv. Manuf. Process. 1(2019).
DOI: 10.1002/amp2.10021
Google Scholar
[27]
A. Vasinonta, J.L. Beuth, M. Griffith, Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures, J. Manuf. Sci. Eng. 129(2007)101- 109.
DOI: 10.1115/1.2335852
Google Scholar
[28]
S. Tsopanos, R.A.W. Mines, S. McKown, Y. Shen, W.J. Cantwell, W. Brooks, C.J. Sutcliffe, The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures, J. Manuf. Sci. Eng.132(2010)041011.
DOI: 10.1115/1.4001743
Google Scholar