DoE Applied to Thermal Analysis and Simulation of Geometrical Stability of a Wind Turbine Blade Made by Selective Laser Melting

Article Preview

Abstract:

The Selective Laser Melting (SLM) is one of the most demanding additive manufacturing(AM) processes, although it assures some superior advantages in producing complex structural componentsand applies to a wide range of materials. The control of SLM parameters is crucial to guaranteethe quality of manufactured component. The steep thermal variation in part during the SLM processinduces some undesired effects, such as warping, residual thermal stresses and microcracks,as wellas geometrical instability. Effectively predicting the influence of process parameters upon the productquality of part made by SLM is extremely useful in the earliest steps of design, especially whena higher productivity is required. Particularly, thermal simulation is used to suitably calibrate someprocess parameters, to improve efficiency and reduce defects. Besides, such simulation is exploited toimprove the heat transfer between the bed and the first product layer, to reduce thermal stress and theoverall product deformation. This study exemplifies how numerical modeling of temperature distributionin a wind turbine blade made by SLM allows predicting the dimensional stability. The Design ofExperiments (DoE) and ANOVA analysis helped in studying effects on the product geometric stabilityand deformation, of some process parameters, as powder layer thickness, hatch space and laser scanspeed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-74

Citation:

Online since:

March 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.C. Zhang, H. Attar, Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review, Adv. Eng. Mater. 4(2016)463-475.

DOI: 10.1002/adem.201500419

Google Scholar

[2] E. Brusa, R. Sesana, E. Ossola, Numerical modeling and testing of mechanical behavior of AM Titanium alloy bracket for aerospace applications, Procedia Struct. Integr. 5(2017)753-760.

DOI: 10.1016/j.prostr.2017.07.166

Google Scholar

[3] A. Olleak, Z. Xi, Finite Element Modeling of the Selective Laser Melting Process for Ti-6Al-4V, in:Proceedings of the Solid Freeform Fabrication Symposium, (2018)13-15.

Google Scholar

[4] B. Song, S. Dong, H. Liao, C. Coddet, Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering, Int. J. Adv. Manu. Technol. 61(2012)967-974.

DOI: 10.1007/s00170-011-3776-6

Google Scholar

[5] H. Gong, H. Gu, K. Zeng, J. Dilip, D. Pal, B. Stucker, J.J. Lewandowski, Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder, in: Solid freeform fabrication symposium, (2014)256-267.

Google Scholar

[6] T. Zhang, H. Li, S. Liu, S. Shen, H. Xie, W. Shi, M. Wei, Evolution of molten pool during selective laser melting of Ti-6Al-4V, J. Phys. D Appl. Phys. 52(2018)055302.

DOI: 10.1088/1361-6463/aaee04

Google Scholar

[7] C.H. Fu, Y.B. Guo, Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V, J. Manuf. Sci. Eng. 136(2014)061004.

DOI: 10.1115/1.4028539

Google Scholar

[8] Y. Li, D. Gu, Thermal behavior during selective laser melting of commercially pure titanium powder: Numerical simulation and experimental study, Addi. Manuf. 1(2014)99-109.

DOI: 10.1016/j.addma.2014.09.001

Google Scholar

[9] C. Panwisawas, C. Qiu, M.J. Anderson, Y.Sovani, R.P. Turner, M.M. Attallah, H.C. Basoalto, Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution, Comp. Mater. Sci. 126(2017)479-490.

DOI: 10.1016/j.commatsci.2016.10.011

Google Scholar

[10] T. Özel, Y.M. Arısoy, L.E. Criales, Computational simulation of thermal and spattering phenomena and microstructure in selective laser melting of Inconel 625, Phys. Procedia 83(2016)1435- 1443.

DOI: 10.1016/j.phpro.2016.08.149

Google Scholar

[11] L. Parry, I.A. Ashcroft, R.D. Wildman, Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation, Additive Manuf. 12(2016)1-15.

DOI: 10.1016/j.addma.2016.05.014

Google Scholar

[12] B. Cheng, J. Lydon, K. Cooper, V. Cole, P. Northrop, K. Chou, Melt pool sensing and size analysis in laser powder-bed metal additive manufacturing, J Manuf. Process. 32(2018)744-753.

DOI: 10.1016/j.jmapro.2018.04.002

Google Scholar

[13] J.R. Zhuang, Y.T. Lee, W.H. Hsieh, A.S. Yang, Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder, Optics & Laser Technol. 103(2018)59-76.

DOI: 10.1016/j.optlastec.2018.01.013

Google Scholar

[14] V.S. Sufiiarov, A.A. Popovich, E.V. Borisov, I.A. Polozov, D.V. Masaylo, A.V. Orlov, The effect of layer thickness at selective laser melting, Procedia Eng. 174(2017)126-134.

DOI: 10.1016/j.proeng.2017.01.179

Google Scholar

[15] M.R. Yavari, K.D. Cole, P.K. Rao, Design Rules for Additive Manufacturing-Understanding the Fundamental Thermal Phenomena to Reduce Scrap, Procedia Manuf. 33(2019)375-382.

DOI: 10.1016/j.promfg.2019.04.046

Google Scholar

[16] S. Dadbakhsh, L. Hao, Effect of layer thickness in selective laser melting on microstructure of Al/5 wt.% Fe2O3 powder consolidated parts, Sci. world J. (2014)2014.[17] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S.I. Golabi, Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed, Mater. Des. 89(2016)255-263.

DOI: 10.1016/j.matdes.2015.10.002

Google Scholar

[18] A.K. Mishra, A. Aggarwal, A. Kumar, N. Sinha, Identification of a suitable volumetric heat source for modelling of selective laser melting of Ti6Al4V powder using numerical and experimental validation approach, Inter. J. Adv. Manuf. Technol. 99(2018)2257-2270.

DOI: 10.1007/s00170-018-2631-4

Google Scholar

[19] E. Kundakcıoğlu, I. Lazoglu, Ö.Poyraz, E. Yasa, N. Cizicioğlu, Thermal and molten pool model in selective laser melting process of Inconel 625, Inter. J. Adv. Manuf. Technol. 95(2018)3977- 3984.

DOI: 10.1007/s00170-017-1489-1

Google Scholar

[20] S. Jagatap, S.A. Nassar, A. Razavykia, B. Giovanni, Process variable effect on the strength of autoclave-bonded film adhesive joints, J. Adhes. Sci. Technol. 33(2019)715-735.

DOI: 10.1080/01694243.2018.1559436

Google Scholar

[21] A. Razavykia, S. Farahany, N.M. Yusof, Evaluation of cutting force and surface roughness in the dry turning of Al-Mg2Si in-situ metal matrix composite inoculated with bismuth using DOE approach, Measurement 76(2015)170-182.

DOI: 10.1016/j.measurement.2015.08.032

Google Scholar

[22] D.C. Montgomery, Introduction to statistical quality control, John Wiley & Sons, New York, (2009).

Google Scholar

[23] A. Razavykia, N.M. Yusof, M.R. Yavari, Determining the effects of machining parameters and modifier on surface roughness in dry turning of Al-20% Mg2Si-PMMC using design of experiments (DOE), Procedia Manuf. 2(2015)280-285.

DOI: 10.1016/j.promfg.2015.07.049

Google Scholar

[24] S.A. Khairallah, A. Anderson, Mesoscopic simulation model of selective laser melting of stainless steel powder, J. Mater. Process. Technol. 214(2014)2627-2636.

DOI: 10.1016/j.jmatprotec.2014.06.001

Google Scholar

[25] H. Ali, H. Ghadbeigi, K. Mumtaz, Residual stress development in selective laser-melted Ti6Al4V: A parametric thermal modelling approach, Int. J. Adv. Manuf. Technol. 97(2018)2621- 2633.

DOI: 10.1007/s00170-018-2104-9

Google Scholar

[26] A. Sola, A. Nouri, Microstructural porosity in additive manufacturing: The formation and detection of pores in metal parts fabricated by powder bed fusion, J. Adv. Manuf. Process. 1(2019).

DOI: 10.1002/amp2.10021

Google Scholar

[27] A. Vasinonta, J.L. Beuth, M. Griffith, Process maps for predicting residual stress and melt pool size in the laser-based fabrication of thin-walled structures, J. Manuf. Sci. Eng. 129(2007)101- 109.

DOI: 10.1115/1.2335852

Google Scholar

[28] S. Tsopanos, R.A.W. Mines, S. McKown, Y. Shen, W.J. Cantwell, W. Brooks, C.J. Sutcliffe, The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures, J. Manuf. Sci. Eng.132(2010)041011.

DOI: 10.1115/1.4001743

Google Scholar