Biochar from Oil Palm Frond to Reduce Fe Ions in Artificial Solution and Peat Water

Article Preview

Abstract:

Raw oil palm fronds (OPF-R) converted into biochar (OPF-B) by torrefaction processes at temperatures range of 200 °C to 300 °C. This study aims to evaluate OPF-B performance to reduce iron ions in artificial solutions and peat water. Batch adsorption carried out at room temperature by stirring (175 rpm) using an orbital shaker. Some parameters observed included optimum torrefaction temperature, optimum conditions of Fe ions adsorption (optimum pH and contact time) and sorption isotherm. Metal content measured using atomic absorption spectroscopy (AAS). Functional groups on material surface characterized using Fourier Transform Infrared (FT-IR). Torrefaction at 260 °C produces biochar with the highest efficiency in removing iron ions. Both functional groups C=O and C-O attributed to lignocellulose on OPF-B were diminished and absorption band of aromatic (C=C) increased which caused by torrefaction. The optimum conditions for removal of Fe ions at pH 5 and 30 minutes contact time. Adsorption process follows the Langmuir Isotherm which indicates the formation of a monolayer with qmax 111.11 mg/g. Amount of 0.025 g OPF-B able to reduce iron concentration from 13.960 mg/L to 0.746 mg/L in 100 mL peat water (has complied with Indonesian clean water standard for iron concentration).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-56

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Kumneadklang, S. Larpkiattaworn, C. Niyasom, S. O-Thong, Bioethanol Production from Oil Palm Frond by Simultaneous Saccharification and Fermentation, Energy Procedia. 79 (2015) 784–790.

DOI: 10.1016/j.egypro.2015.11.567

Google Scholar

[2] C. Oktaviananda, R.F. Rahmawati, A. Prasetya, C.W. Purnomo, A.T. Yuliansyah, R.B. Cahyono, Effect of temperature and biomass-water ratio to yield and product characteristics of hydrothermal treatment of biomass, in: AIP Conf. Proc. 2017, p.020029.

DOI: 10.1063/1.4978102

Google Scholar

[3] K. Weber, P. Quicker, Properties of biochar, Fuel. 217 (2018) 240–261.

Google Scholar

[4] Y.Y. Gan, H.C. Ong, P.L. Show, T.C. Ling, W.H. Chen, K.L. Yu, R. Abdullah, Torrefaction of microalgal biochar as potential coal fuel and application as bio-adsorbent, Energy Convers. Manag. 165 (2018) 152–162.

DOI: 10.1016/j.enconman.2018.03.046

Google Scholar

[5] Q.V. Bach, W.H. Chen, Y.S. Chu, Ø. Skreiberg, Predictions of biochar yield and elemental composition during torrefaction of forest residues, Bioresour. Technol. 215 (2016) 239–246.

DOI: 10.1016/j.biortech.2016.04.009

Google Scholar

[6] Y.F. Huang, H. Te Sung, P. Te Chiueh, S.L. Lo, Microwave torrefaction of sewage sludge and leucaena, J. Taiwan Inst. Chem. Eng. 70 (2017) 236–243.

DOI: 10.1016/j.jtice.2016.10.056

Google Scholar

[7] J. Li, Y. Li, Y. Wu, M. Zheng, A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant, J. Hazard. Mater. 280 (2014) 450–457.

DOI: 10.1016/j.jhazmat.2014.08.033

Google Scholar

[8] H. Jalayeri, F. Pepe, Novel and high-performance biochar derived from pistachio green hull biomass: Production, characterization, and application to Cu(II) removal from aqueous solutions, Ecotoxicol. Environ. Saf. 168 (2019) 64–71.

DOI: 10.1016/j.ecoenv.2018.10.058

Google Scholar

[9] A. Rodríguez-Vila, H. Selwyn-Smith, L. Enunwa, I. Smail, E.F. Covelo, T. Sizmur, Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature, Environ. Sci. Pollut. Res. 25 (2018) 7730–7739.

DOI: 10.1007/s11356-017-1047-2

Google Scholar

[10] C. Wang, H. Wang, Y. Cao, Pb(II) sorption by biochar derived from Cinnamomum camphora and its improvement with ultrasound-assisted alkali activation, Colloids Surfaces A Physicochem. Eng. Asp. 556 (2018) 177–184.

DOI: 10.1016/j.colsurfa.2018.08.036

Google Scholar

[11] M. Naswir, S. Arita, Marsi, Salni, Treatment of Peat Water Using Local Raw Material Formulations of Jambi, Indonesia, Asian J. Chem. 27 (2015) 3951–3955.

DOI: 10.14233/ajchem.2015.18963

Google Scholar

[12] J.H.M. Wösten, E. Clymans, S.E. Page, J.O. Rieley, S.H. Limin, Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia, Catena. 73 (2008) 212–224.

DOI: 10.1016/j.catena.2007.07.010

Google Scholar

[13] C. Trigo, L. Cox, K. Spokas, Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents, Sci. Total Environ. 566–567 (2016) 1454–1464.

DOI: 10.1016/j.scitotenv.2016.06.027

Google Scholar

[14] A. Hanoğlu, A. Çay, J. Yanık, Production of biochars from textile fibres through torrefaction and their characterisation, Energy. (2019) 664–673.

DOI: 10.1016/j.energy.2018.10.123

Google Scholar

[15] M. Rajabzadeh, H. Aghaie, H. Bahrami, Thermodynamic study of Iron (III) removing by the synthesized α-Alumina powder and evaluating the corresponding adsorption isotherm models using Response Surface Method, Arab. J. Chem. (2019).

DOI: 10.1016/j.arabjc.2019.07.006

Google Scholar

[16] G. Hodaifa, J.M. Ochando-Pulido, S. Ben Driss Alami, S. Rodriguez-Vives, A. Martinez-Ferez, Kinetic and thermodynamic parameters of iron adsorption onto olive stones, Ind. Crops Prod. 49 (2013) 526–534.

DOI: 10.1016/j.indcrop.2013.05.039

Google Scholar

[17] A. Abdolali, H.H. Ngo, W. Guo, S. Lu, S.S. Chen, N.C. Nguyen, X. Zhang, J. Wang, Y. Wu, A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study, Sci. Total Environ. 542 (2016) 603–611.

DOI: 10.1016/j.scitotenv.2015.10.095

Google Scholar

[18] M. Calero, A. Pérez, G. Blázquez, A. Ronda, M.A. Martín-Lara, Characterization of chemically modified biosorbents from olive tree pruning for the biosorption of lead, Ecol. Eng. 58 (2013) 344–354.

DOI: 10.1016/j.ecoleng.2013.07.012

Google Scholar

[19] R. Tabaraki, A. Nateghi, Multimetal biosorption modeling of Zn2+, Cu2+ and Ni2+ by Sargassum ilicifolium, Ecol. Eng. 71 (2014) 197–205.

DOI: 10.1016/j.ecoleng.2014.07.031

Google Scholar

[20] C. Chen, Evaluation of Equilibrium Sorption Isotherm Equations, Open Chem. Eng. J. 7 (2013) 24–44.

Google Scholar

[21] Y.-S. Ho, Selection of optimum sorption isotherm, Carbon N. Y. 42 (2004) 2115–2116.

DOI: 10.1016/j.carbon.2004.03.019

Google Scholar

[22] R. Rinaldi, Y. Yasdi, W.L.C. Hutagalung, Removal of Ni (II) and Cu (II) ions from aqueous solution using rambutan fruit peels (Nephelium lappaceum L.) as adsorbent, in: AIP Conf. Proc., 2018: p.020098.

DOI: 10.1063/1.5065058

Google Scholar

[23] Y.S. Ho, R. Malaryvizhi, Equilibrium isotherm studies of methylene blue adsorption onto activated carbon prepared from Delonix regia pods, J Env. Prot Sci. 3 (2009) 111–116.

Google Scholar