One Pot Green Synthesis of Gold Nanoparticles Using Piper Betle Leaf Extract and their Antibacterial Activities

Article Preview

Abstract:

Gold nanoparticles have been successfully synthesized using aqueous leaf extract of Piper betle In this extracellular synthesis, after exposing of metal ions to betel leaf extract, reduction leads into their metallic state and these are stabilized by the biomolecules present in leaf extract, where extract are being used as both reducing as well as stabilizing agents at ambient condition. Gold (AuNPs) nanoparticles are characterized by UV-Vis, FESEM, HRTEM and XRD measurements. Synthesized gold nanoparticles are mostly spherical in shape with diameter ~ 30-50 nm. Antibacterial activities of the synthesized nanoparticles are investigated against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive (Staphylococcus aureus and Bacillus thuringiensis) bacteria using the disc diffusion method. AuNPs show inhibition activity against P. aeruginosa and E. coli respectively nearly equivalent to the commercially available antibacterial drug e.g. Norfloxacin (Nx). The minimum inhibition concentration (MIC) results indicate that 36 μg/mL gold nanoparticles inhibit the growth of E. coli cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-116

Citation:

Online since:

April 2021

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. of Nano Res. 10 (2008) 507–517.

DOI: 10.1007/s11051-007-9275-x

Google Scholar

[2] A. Jagannathan, R. Rajaramakrishna, K.M. Rajashekara, J. Gangareddy, V. Pattar, S.V. Rao, B. Eraiah, V.J. Angadi, J. Kaewkhao, S. Kothan, Investigations on nonlinear optical properties of gold nanoparticles doped fluoroborate glasses for optical limiting applications, Journal of Non-Crystalline Solids, 53815 (2020) 120010.

DOI: 10.1016/j.jnoncrysol.2020.120010

Google Scholar

[3] Y. Zou, Z. Guo, L. Ye, Y. Cui, K. Yu, Ultra-long cyclic Ni nanoparticles/carbon network hybrid lithium-ion battery anode toward smart electronics, J. of Allo. and Comp. 80330 (2019) 527-537.

DOI: 10.1016/j.jallcom.2019.06.271

Google Scholar

[4] X. Xing, S. Tang, H. Hong, H. Jin, Concentrated solar photocatalysis for hydrogen generation from water by titania-containing gold nanoparticles, Int. J. of Hydro. Ener. 45(1620) (2020) 9612-9623.

DOI: 10.1016/j.ijhydene.2020.01.197

Google Scholar

[5] Z. Ji, M.N. Ismail, Jr D.M. Callahan, E. Pandowo, Z. Cai, T.L. Goodrich, K.S. Ziemer, J. Warzywoda, Jr A. Sacco, The role of silver nanoparticles on silver modified titanosilicate ETS-10 in visible light photocatalysis, App. Cat. B: Env. 102 (2011) 323-333.

DOI: 10.1016/j.apcatb.2010.12.021

Google Scholar

[6] F. Bayat, H. Tajall, Nanosphere lithography: the effect of chemical etching and annealing sequence on the shape and spectrum of nano-metal arrays, Heliyon, 6(2) (2020) e03382.

DOI: 10.1016/j.heliyon.2020.e03382

Google Scholar

[7] L. Zou, R. Shen, L. Ling, G. Li, Sensitive DNA detection by polymerase chain reaction with gold nanoparticles, Analy. Chimi. Acta, 103814 (2018) 105-111.

DOI: 10.1016/j.aca.2018.07.006

Google Scholar

[8] M. Šetka, F.A. Bahos, D. Matatagui, M. Potoček, S. Vallejos, Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene, Sens. and Actu. B: Chem. 3041 (2020) 127337.

DOI: 10.1016/j.snb.2019.127337

Google Scholar

[9] P. Mukherjee, R. Bhattacharya, N. Bone, Y.K. Lee, C.R. Patra, S. Wang, L. Lu, C. Secreto, P.C. Banerjee, M.J. Yaszemski, N.E. Kay, D. Mukhopadhyay, Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis, J. of Nanobiotech. 5 (2007) 4.

DOI: 10.1186/1477-3155-5-4

Google Scholar

[10] A. Konefał, W. Lniak, J. Rostocka, A. Orlef, K. Rusiecka, Influence of a shape of gold nanoparticles on the dose enhancement in the wide range of gold mass concentration for high-energy X-ray beams from a medical linac, Reports of Practic. Onco. & Radiothe. 25(2020) 579-585.

DOI: 10.1016/j.rpor.2020.05.003

Google Scholar

[11] D. Mandal, M.E. Bolander, D. Mukhopadhyay, G. Sankar, P. Mukherjee, The use of microorganisms for the formation of metal nanoparticles and their application, App. Microbio. and Biotech. 69 (2006) 485–492.

DOI: 10.1007/s00253-005-0179-3

Google Scholar

[12] S. Balasubramanian, S.M.J. Kala, T.L. Pushparaj, Biogenic synthesis of gold nanoparticles using Jasminum auriculatum leaf extract and their catalytic, antimicrobial and anticancer activities, J. of Drug Deli. Sci. and Tech. 57 (2020) 101620.

DOI: 10.1016/j.jddst.2020.101620

Google Scholar

[13] I. Kumar, M. Mondal, V. Meyappan, N. Sakthivel, Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants, Mat. Res. Bull. 117 (2019) 18-27.

DOI: 10.1016/j.materresbull.2019.04.029

Google Scholar

[14] D. Philip, Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis, Physica E. 42 (2010) 1417-1424.

DOI: 10.1016/j.physe.2009.11.081

Google Scholar

[15] S.P. Dubey, M. Lahtinen, M. Sillanpaa, Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa, Coll. and Surf. A: Physicochem. Engin. Asp. 364 (2010) 34-41.

DOI: 10.1016/j.colsurfa.2010.04.023

Google Scholar

[16] H. Bar, D.K. Bhui, G.P. Sahoo, P. Sarkar, S. Pyne, D. Chattopadhyay, A. Misra, Synthesis of gold nanoparticles of variable morphologies using aqueous leaf extracts of Cocculus hirsutus, J. of Exp. Nanosci. 7 (2012) 109-119.

DOI: 10.1080/17458080.2010.509875

Google Scholar

[17] N.A. Begum, S. Mondal, S. Basu, R.A. Laskar, D. Mondal, Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts, Coll. and Surf. B: Biointerf. 71 (2009) 113-118.

DOI: 10.1016/j.colsurfb.2009.01.012

Google Scholar

[18] M.P. Desai, G.M. Sangaokar, K.D. Pawar, Kokum fruit mediated biogenic gold nanoparticles with photoluminescent, photocatalytic and antioxidant activities, Proce. Biochem. 70 (2018) 188-197.

DOI: 10.1016/j.procbio.2018.03.027

Google Scholar

[19] R.A. Zayadi, F.A. Bakar, M.K. Ahmad, Elucidation of synergistic effect of eucalyptus globulus honey and Zingiber officinale in the synthesis of colloidal biogenic gold nanoparticles with antioxidant and catalytic properties, Sustain. Chem. and Pharm. 13 (2019) 100156.

DOI: 10.1016/j.scp.2019.100156

Google Scholar

[20] S. Vimalraj, T. Ashokkumar, S. Saravanan, Biogenic gold nanoparticles synthesis mediated by Mangifera indica seed aqueous extracts exhibits antibacterial, anticancer and anti-angiogenic properties, Biomed. & Pharmacothera. 105 (2018) 440-448.

DOI: 10.1016/j.biopha.2018.05.151

Google Scholar

[21] Y.C. Ko, Y.L. Huang, C.H. Lee, M.J. Chen, L.M. Lin, C.C. Tsai, Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan, J. of Oral Patholo. & Med. 24 (1995) 450–453.

DOI: 10.1111/j.1600-0714.1995.tb01132.x

Google Scholar

[22] T. Nalina, Z.H.A. Rahim, The crude aqueous extract of Piper betle L. and its antibacterial effect towards Streptococcus mutans, Am. J. of Biochem. and Biotech. 3(2007) 10-15.

DOI: 10.3844/ajbbsp.2007.10.15

Google Scholar

[23] S.B. Misra, S.N. Dixit, Antifungal activity of leaf extracts of some higher plants, Acta Botani. Ind. 7 (1979) 147-150.

Google Scholar

[24] G. Santhanam, S. Nagarajan, Wound healing activity of Curcuma aromatica and Piper betle L, Fitoterapia, 61(1990) 458-459.

Google Scholar

[25] P.H. Evans, W.S. Bowers, E.J. Vunk, Identification of fungicidal and nematocidal components in the leaves of Piper betle (Piperaceae), J. of Agri. and Food Chem. 32 (1984) 1254-1256.

DOI: 10.1021/jf00126a011

Google Scholar

[26] S.J. Chen, B.N. Wu, J.L. Yeh, Y.C. Lo, I.S. Chn, I.J. Chen, C-fiber-evoked automatic cardiovascular effects after injection of Piper betle inflorescence extract, J. of Ethnophamaco. 45 (1995) 183-188.

DOI: 10.1016/0378-8741(94)01213-j

Google Scholar

[27] W.D. Ratnasooriya, K.G.I. Jayawardena, G.A.S. Premakumara, Antimotility effects of Piper betle leaf extract on washed human spermatozoa, J. of the Nat. Sci. Found. of Sri Lanka, 18 (1990) 53-60.

DOI: 10.4038/jnsfsr.v18i1.8208

Google Scholar

[28] S.A. Saeed, S. Farnaz, R.U. Simjee, A. Malik, Triterpenes and bsitosterol from Piper betle: isolation, antiplatelet and anti-inflammatory effects, Biochem. Soc. Trans. 21 (1993) 462S.

DOI: 10.1042/bst021462s

Google Scholar

[29] I.C. Chopra, K.S. Jamwal, B.N. Khajuria, Pharmacological action of some common essential oil bearing plants used in indigenous medicine including P. betle, Indian J. Med. Res, 42 (1954) 385-389.

Google Scholar

[30] M. Nagabhushan, A.J. Amonkar, U.J. Nair, A.V. D'Souza, S.V. Bhide, Hydroxy-Chavicol: a New Anti-Nitrosating Phenolic Compound from Betel Leaf, Mutagenesis 4 (1989) 200-204.

DOI: 10.1093/mutage/4.3.200

Google Scholar

[31] N. Ramji, R. Iyer, S. Chandrasekaran, Phenolic antibacterials from Piper betle in the prevention of halitosis, J. of Ethnopharmaco. 83 (2002) 149-152.

DOI: 10.1016/s0378-8741(02)00194-0

Google Scholar

[32] M. Sugumaran, M.S. Gandhi, K. Sankarnarayanan, M. Yokesh, M. Poornima, S.R. S.R. Rajasekhar, Chemical composition and antimicrobial activity of vellaikodi variety of Piper betle Linn Leaf oil against dental pathogens, Inter. J. of Pharm. Tech. Res. 3 (2011) 2135-2139.

Google Scholar

[33] Q.L. Feng, J. Wu, G.O. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. of Biomed. Mat. Res. 52 (4) (2000) 662-668.

DOI: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3

Google Scholar