[1]
B. González-Fonteboa, F. Martínez-Abella, J. Eiras-López, et al., Effect of recycled coarse aggregate on damage of recycled concrete, Mater. Struct (10) (2011) 1759-1771.
DOI: 10.1617/s11527-011-9736-7
Google Scholar
[2]
B. González-Fonteboa, F. Martínez-Abella, M.F. Herrador, et al., Structural recycled concrete: behaviour under low loading rate, Constr. Build. Mater (1) (2012) 111-116.
DOI: 10.1016/j.conbuildmat.2011.08.010
Google Scholar
[3]
N.Y. Ho, P.K. Yang, W.F. Lim, et al., Efficient utilization of recycled concrete aggregate in structural concrete, J. Mater. Civ. Eng. 25 (3) (2013) 318-327.
DOI: 10.1061/(asce)mt.1943-5533.0000587
Google Scholar
[4]
S.I. Ivan, B.M. Snezana, M.M. Zoran, et al., Flexural behavior of reinforced recycled aggregate concrete beams under short-term loading, Mater. Struct (6) (2013) 1045-1059.
DOI: 10.1617/s11527-012-9952-9
Google Scholar
[5]
J.F. Lamond, Significance of Tests and Properties of Concrete and Concrete-Making Materials, ASTM International, (2006).
Google Scholar
[6]
X. Li, Recycling and reuse of waste concrete in China: part I. Mate behavior of recycled aggregate concrete, Resour. Conserv. Recy. 53 (1) (2008) 36-44.
Google Scholar
[7]
C.H. Liu, J.Y. Fu, Y.L. Pi, et al., Influence of demolished concrete blocks on mechanical properties of recycled blend concrete, Constr. Build. Mater. (2017) 329-347.
DOI: 10.1016/j.conbuildmat.2017.01.030
Google Scholar
[8]
S. Lotfi, M. Eggimann, E. Wagner, et al., Performance of recycled aggregate concrete based on a new concrete recycling technology, Constr. Build. Mater 95 (2015) 243-256.
DOI: 10.1016/j.conbuildmat.2015.07.021
Google Scholar
[9]
B. Wu, X.Y. Zhao, J.S Zhang, Cyclic behavior of thin-walled square steel tubular columns filled with demolished concrete lumps and fresh concrete. J Constr Steel Res 77(10) (2012) 69-81.
DOI: 10.1016/j.jcsr.2012.05.003
Google Scholar
[10]
B. Wu, L. Lin, J.X. Zhao, et al.,Creep behavior of thin-walled square steel tubular columns filled with demolished concrete lumps and fresh concrete, Constr. Build. Mater. 187 (2018) 773-790.
DOI: 10.1016/j.conbuildmat.2018.07.222
Google Scholar
[11]
B Wu, W.F. Li, X.Y. Zhao, Behavior of slender steel tubular columns filled with fresh concrete and demolished concrete lumps, Proce. Eng. 210 (2017) 196-202.
DOI: 10.1016/j.proeng.2017.11.066
Google Scholar
[12]
B. Wu, C.H. Liu, Y.P. Wu, Compressive behaviors of cylindrical concrete specimens made of demolished concrete blocks and fresh concrete, Constr. Build. Mater. 53 (2014) 118-130.
DOI: 10.1016/j.conbuildmat.2013.11.071
Google Scholar
[13]
B. Wu, Q. Zhang, G.M. Chen, Compressive behavior of thin-walled square steel tubular columns filled with steel stirrup-reinforced compound concrete, Eng. Struct. 170 (2018) 178-195.
DOI: 10.1016/j.engstruct.2018.05.028
Google Scholar
[14]
B. Wu, Y. Yu, Z.P Chen, et al., Shape effect on compressive mechanical properties of compound concrete containing demolished concrete lumps, Constr. Build. Mater 187 (2018) 50-64.
DOI: 10.1016/j.conbuildmat.2018.07.086
Google Scholar
[15]
M.A. Mansur, M.S. Chin, T.H. Wee, Stress-strain relationship of high-strength fiber concrete in compression, J. Mater. Civ. Eng. 11 (1) (1999) 21-29.
DOI: 10.1061/(asce)0899-1561(1999)11:1(21)
Google Scholar
[16]
T. Mohammed, A. Hasnat, M. Awal, et al., Recycling of brick aggregate concrete as coarse aggregate, J. Mater. Civ. Eng. 27 (7) (2014).
DOI: 10.1061/(asce)mt.1943-5533.0001043
Google Scholar
[17]
A.M. Neville, Properties of Concrete, Longman, London, UK, (2011).
Google Scholar
[18]
R.S. Paranhos, B.G. Cazacliu, C.H. Sampaio, et al., A sorting method to value recycled concrete, J. Clean. Prod. 112 (2016) 2249-2258.
DOI: 10.1016/j.jclepro.2015.10.021
Google Scholar
[19]
C.S. Poon, Z.H. Shui, L. Lam, Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates, Constr. Build. Mater. 18 (6) (2004) 461-468.
DOI: 10.1016/j.conbuildmat.2004.03.005
Google Scholar
[20]
S.P. Shah, S. Chandra, Critical stress, volume change, and microcracking of concrete, J. Proc. 65 (9) (1968) 770-780.
Google Scholar
[21]
H. Shima, H. Tateyashiki, R. Matsuhashi, et al., An advanced concrete recycling technology and its applicability assessment through input–output analysis, J. Adv. Concr. Technol. 3 (1) (2005) 53-67.
DOI: 10.3151/jact.3.53
Google Scholar
[22]
R.V. Silva, J. de Brito, R.K. Dhir, Establishing a relationship between modulus of elasticity and compressive strength of recycled aggregate concrete, J. Clean. Prod. 112 (2016) 2171-2186.
DOI: 10.1016/j.jclepro.2015.10.064
Google Scholar
[23]
J.I. Sim, K.H. Yang, H.Y. Kim, et al., Size and shape effects on compressive strength of lightweight concrete, Constr. Build. Mater. 38 (2013) 854-864.
DOI: 10.1016/j.conbuildmat.2012.09.073
Google Scholar
[24]
J.I. Sim, K.H. Yang, J.K. Jeon, Influence of aggregate size on the compressive size effect according to different concrete types, Constr. Build. Mater. 44 (2013) 716-725.
DOI: 10.1016/j.conbuildmat.2013.03.066
Google Scholar
[25]
S. Sinaie, A. Heidarpour, X.L. Zhao, et al., Effect of size on the response of cylindrical concrete samples under cyclic loading, Constr. Build. Mater. 84 (2015) 399-408.
DOI: 10.1016/j.conbuildmat.2015.03.076
Google Scholar
[26]
K.A.S. Susantha, H. Ge, T. Usami, Uniaxial stress–strain relationship of concrete confined by various shaped steel tubes, Eng. Struct. 23 (10) (2001) 1331-1347.
DOI: 10.1016/s0141-0296(01)00020-7
Google Scholar
[27]
J.G. Teng, J.L. Zhao, T. Yu, et al., Behavior of FRP-confined compound concrete containing recycled concrete lumps, J. Compos. Constr. 20 (1) (2015) 04015038.
DOI: 10.1061/(asce)cc.1943-5614.0000602
Google Scholar
[28]
C. Thomas, J. Setién, J.A. Polanco, et al., Fatigue limit of recycled aggregate concrete, Constr. Build. Mater. 52 (2014) 146-154.
DOI: 10.1016/j.conbuildmat.2013.11.032
Google Scholar
[29]
B. Wu, Q.X. Liu, W. Liu, et al., Primary study on recycled concrete segment-filled steel tubular members, Earthq. Resist. Eng. Retrofit. 30 (4) (2008) 120-124 (in Chinese).
Google Scholar
[30]
B. Wu, C.H. Liu, Y. Yang, Size effect on compressive behaviors of normal-strength concrete cubes made from demolished concrete blocks and fresh concrete, Mag. Concr. Res. 65 (19) (2013) 1155-1167.
DOI: 10.1680/macr.13.00053
Google Scholar
[31]
B. Wu, X.Y. Zhao, J.S. Zhang, et al., Cyclic testing of thin-walled square steel tubular columns filled with demolished concrete blocks and fresh concrete, Thin-Wall. Struct. 66 (2013) 50-61.
DOI: 10.1016/j.tws.2013.01.008
Google Scholar
[32]
B. Wu, S.Y. Zhang, Y. Yang, Compressive behaviors of cubes and cylinders made of normal-strength demolished concrete blocks and high-strength fresh concrete, Constr. Build. Mater. 78 (2015) 342-353.
DOI: 10.1016/j.conbuildmat.2015.01.027
Google Scholar
[33]
J.Z. Xiao, W.G. Li, Z. Sun, et al., Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation, Cem. Concr. Comp. 37 (2013) 276-292.
DOI: 10.1016/j.cemconcomp.2013.01.006
Google Scholar
[34]
H. Yang, L. Lv, Z. Deng, et al., Residual compressive stress-strain relation of recycled aggregate concrete after exposure to high temperatures, Struct. Concrete 18 (3) (2017) 1-8.
DOI: 10.1002/suco.201500153
Google Scholar
[35]
S.T. Yi, E.I. Yang, J.C. Choi, Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete, Nucl. Eng. Des. 236 (2) (2006) 115-127.
DOI: 10.1016/j.nucengdes.2005.08.004
Google Scholar
[36]
J. Ying, B. Zhou, J.Z. Xiao, Pore structure and chloride diffusivity of recycled aggregate concrete with nano-SiO2, and nano-TiO2, Constr. Build. Mater. 150 (2017) 49-55.
DOI: 10.1016/j.conbuildmat.2017.05.168
Google Scholar
[37]
H.R. Zhang, Y.X. Zhao, Integrated interface parameters of recycled aggregate concrete, Constr. Build. Mater. 101 (2015) 861-877.
DOI: 10.1016/j.conbuildmat.2015.12.096
Google Scholar
[38]
J.S. Zhang, Experimental Study of the Axial Strength and Seismic Behavior of Square, Thin-Walled Steel Tubular Columns Filled with Demolished Concrete Lumps (Master's thesis), South China University of Technology, 2011 (in Chinese).
DOI: 10.4028/www.scientific.net/kem.517.958
Google Scholar
[39]
X.Y. Zhao, B. Wu, L. Wang, Structural response of thin-walled square steel tubular columns filled with demolished concrete lumps and fresh concrete, Constr. Build. Mater. 129 (2016) 216-242.
DOI: 10.1016/j.conbuildmat.2016.10.099
Google Scholar
[40]
H.D. Zhen, C.S. Poon, Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars, Mater. Des. 58 (6) (2014) 19-29.
DOI: 10.1016/j.matdes.2014.01.044
Google Scholar
[41]
M.S. Chin M.A. Mansur, T.H. Wee, Effects of shape, size, and casting direction of specimens on stress-strain curves of high-strength concrete, ACI Mater. J. 94 (3) (1997) 209-219.
DOI: 10.14359/301
Google Scholar