[1]
Z. Qian, Y. Li, Z. Rao, Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling, Energy Convers. Manag. 126 (2016) 622–631. https://doi.org/10.1016/j.enconman.2016.08.063.
DOI: 10.1016/j.enconman.2016.08.063
Google Scholar
[2]
M.M. Sarafraz, V. Nikkhah, M. Nakhjavani, A. Arya, Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel, Appl. Therm. Eng. 123 (2017) 29–39. https://doi.org/10.1016/j.applthermaleng.2017.05.056.
DOI: 10.1016/j.applthermaleng.2017.05.056
Google Scholar
[3]
A.G. Fedorov, R. Viskanta, Three-dimensional conjugate heat transfer in the microchannel heat sink for electronic packaging, Int. J. Heat Mass Transf. 43 (2000) 399–415. https://doi.org/10.1016/S0017-9310(99)00151-9.
DOI: 10.1016/s0017-9310(99)00151-9
Google Scholar
[4]
D.B. Tuckerman, R.F.W. Pease, D.B. Tuckerman, R.F.W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. 2 (1981) 126–129. https://doi.org/10.1109/EDL.1981.25367.
DOI: 10.1109/edl.1981.25367
Google Scholar
[5]
P. Gunnasegaran, H.A. Mohammed, N.H. Shuaib, R. Saidur, The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes, Int. Commun. Heat Mass Transf. 37 (2010) 1078–1086. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014.
DOI: 10.1016/j.icheatmasstransfer.2010.06.014
Google Scholar
[6]
D.B. Monteiro, P.E.B. de Mello, Thermal performance and pressure drop in a ceramic heat exchanger evaluated using CFD simulations, Energy. 45 (2012) 489–496. https://doi.org/10.1016/j.energy.2012.02.012.
DOI: 10.1016/j.energy.2012.02.012
Google Scholar
[7]
X.J. Shi, S. Li, B. Agnew, Z.H. Zheng, Effects of geometrical parameters and Reynolds number on the heat transfer and flow characteristics of rectangular micro-channel using nano-fluid as working fluid, Therm. Sci. Eng. Prog. 15 (2020). https://doi.org/10.1016/j.tsep.2019.100456.
DOI: 10.1016/j.tsep.2019.100456
Google Scholar
[8]
S.P. Jang, S.U.S. Choi, Cooling performance of a microchannel heat sink with nanofluids, Appl. Therm. Eng. 26 (2006) 2457–2463. https://doi.org/10.1016/j.applthermaleng.2006.02.036.
DOI: 10.1016/j.applthermaleng.2006.02.036
Google Scholar
[9]
M. Zadhoush, A. Ahmadi Nadooshan, M. Afrand, H. Ghafori, Constructal optimization of longitudinal and latitudinal rectangular fins used for cooling a plate under free convection by the intersection of asymptotes method, Int. J. Heat Mass Transf. 112 (2017) 441–453. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.108.
DOI: 10.1016/j.ijheatmasstransfer.2017.04.108
Google Scholar
[10]
R. Karvinen, T. Karvinen, Optimum geometry of fixed volume plate fin for maximizing heat transfer, Int. J. Heat Mass Transf. 53 (2010) 5380–5385. https://doi.org/10.1016/j.ijheatmasstransfer.2010.07.018.
DOI: 10.1016/j.ijheatmasstransfer.2010.07.018
Google Scholar
[11]
R. Karvinen, T. Karvinen, Optimum geometry of plate fins, J. Heat Transfer. 134 (2012). https://doi.org/10.1115/1.4006163.
DOI: 10.1115/1.4006163
Google Scholar
[12]
R.. Shah, EXTENDED SURFACE HEAT TRANSFER, A-to-Z Guid. to Thermodyn. Heat Mass Transf. Fluids Eng. e (2006) 1105. https://doi.org/10.1615/AtoZ.e.EXTSURHEATRA.
Google Scholar
[13]
I.A. Ghani, N.A.C. Sidik, N. Kamaruzaman, Hydrothermal performance of microchannel heat sink: The effect of channel design, Int. J. Heat Mass Transf. 107 (2017) 21–44. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.031.
DOI: 10.1016/j.ijheatmasstransfer.2016.11.031
Google Scholar
[14]
G.D. Xia, J. Jiang, J. Wang, Y.L. Zhai, D.D. Ma, Effects of different geometric structures on fluid flow and heat transfer performance in microchannel heat sinks, Int. J. Heat Mass Transf. 80 (2015) 439–447. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.095.
DOI: 10.1016/j.ijheatmasstransfer.2014.08.095
Google Scholar
[15]
H.A. Mohammed, P. Gunnasegaran, N.H. Shuaib, Influence of channel shape on the thermal and hydraulic performance of microchannel heat sink, Int. Commun. Heat Mass Transf. 38 (2011) 474–480. https://doi.org/10.1016/j.icheatmasstransfer.2010.12.031.
DOI: 10.1016/j.icheatmasstransfer.2010.12.031
Google Scholar
[16]
A. Husain, K.Y. Kim, Shape optimization of micro-channel heat sink for micro-electronic cooling, in: IEEE Trans. Components Packag. Technol., 2008: p.322–330. https://doi.org/10.1109/TCAPT.2008.916791.
DOI: 10.1109/tcapt.2008.916791
Google Scholar
[17]
L. Lin, Y.Y. Chen, X.X. Zhang, X.D. Wang, Optimization of geometry and flow rate distribution for double-layer microchannel heat sink, Int. J. Therm. Sci. 78 (2014) 158–168. https://doi.org/10.1016/j.ijthermalsci.2013.12.009.
DOI: 10.1016/j.ijthermalsci.2013.12.009
Google Scholar
[18]
S.H. Chong, K.T. Ooi, T.N. Wong, Optimisation of single and double layer counter flow microchannel heat sinks, Appl. Therm. Eng. 22 (2002) 1569–1585. https://doi.org/10.1016/S1359-4311(02)00083-2.
DOI: 10.1016/s1359-4311(02)00083-2
Google Scholar
[19]
A. Sakanova, S. Yin, J. Zhao, J.M. Wu, K.C. Leong, Optimization and comparison of double-layer and double-side micro-channel heat sinks with nanofluid for power electronics cooling, Appl. Therm. Eng. 65 (2014) 124–134. https://doi.org/10.1016/j.applthermaleng.2014.01.005.
DOI: 10.1016/j.applthermaleng.2014.01.005
Google Scholar
[20]
G. Xie, Z. Chen, B. Sunden, W. Zhang, Numerical predictions of the flow and thermal performance of water-cooled single-layer and double-layer wavy microchannel heat sinks, Numer. Heat Transf. Part A Appl. 63 (2013) 201–225. https://doi.org/10.1080/10407782.2013.730445.
DOI: 10.1080/10407782.2013.730445
Google Scholar
[21]
K. Jeevan, I.A. Azid, K.N. Seetharamu, Optimization of double layer counter flow (DLCF) micro-channel heat sink used for cooling chips directly, in: Proc. 6th Electron. Packag. Technol. Conf. EPTC 2004, 2004: p.553–558. https://doi.org/10.1109/eptc.2004.1396669.
DOI: 10.1109/eptc.2004.1396669
Google Scholar
[22]
K.C. Wong, M.L. Ang, Thermal hydraulic performance of a double-layer microchannel heat sink with channel contraction, Int. Commun. Heat Mass Transf. 81 (2017) 269–275. https://doi.org/10.1016/j.icheatmasstransfer.2016.09.013.
DOI: 10.1016/j.icheatmasstransfer.2016.09.013
Google Scholar
[23]
Y. Hadad, B. Ramakrishnan, R. Pejman, S. Rangarajan, P.R. Chiarot, A. Pattamatta, B. Sammakia, Three-objective shape optimization and parametric study of a micro-channel heat sink with discrete non-uniform heat flux boundary conditions, Appl. Therm. Eng. (2019) 720–737. https://doi.org/10.1016/j.applthermaleng.2018.12.128.
DOI: 10.1016/j.applthermaleng.2018.12.128
Google Scholar
[24]
P. Nitiapiruk, O. Mahian, A.S. Dalkilic, S. Wongwises, Performance characteristics of a microchannel heat sink using TiO2/water nanofluid and different thermophysical models, Int. Commun. Heat Mass Transf. 47 (2013) 98–104. https://doi.org/10.1016/j.icheatmasstransfer.2013.07.001.
DOI: 10.1016/j.icheatmasstransfer.2013.07.001
Google Scholar
[25]
T.H. Tsai, R. Chein, Performance analysis of nanofluid-cooled microchannel heat sinks, Int. J. Heat Fluid Flow. 28 (2007) 1013–1026. https://doi.org/10.1016/j.ijheatfluidflow.2007.01.007.
DOI: 10.1016/j.ijheatfluidflow.2007.01.007
Google Scholar
[26]
E.M. Tokit, H.A. Mohammed, M.Z. Yusoff, Thermal performance of optimized interrupted microchannel heat sink (IMCHS) using nanofluids, Int. Commun. Heat Mass Transf. 39 (2012) 1595–1604. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.013.
DOI: 10.1016/j.icheatmasstransfer.2012.10.013
Google Scholar
[27]
A.A. Awais, M.H. Kim, Experimental and numerical study on the performance of a minichannel heat sink with different header geometries using nanofluids, Appl. Therm. Eng. 171 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115125.
DOI: 10.1016/j.applthermaleng.2020.115125
Google Scholar
[28]
A. Muhammad, D. Selvakumar, J. Wu, Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink, Int. J. Heat Mass Transf. 150 (2020) 119265. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119265.
DOI: 10.1016/j.ijheatmasstransfer.2019.119265
Google Scholar
[29]
A. Muhammad, D. Selvakumar, A. Iranzo, Q. Sultan, J. Wu, Comparison of pressure drop and heat transfer performance for liquid metal cooled mini-channel with different coolants and heat sink materials, J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09318-2.
DOI: 10.1007/s10973-020-09318-2
Google Scholar
[30]
S.-W. Kang, L.J. Yang, C.-S. Yu, J.-S. Chen, Performance test and analysis of silicon-based microchannel heat sink, in: R.J. Hwu, K. Wu (Eds.), Terahertz and Gigahertz Photonics, SPIE, 1999: p.259. https://doi.org/10.1117/12.370172.
DOI: 10.1117/12.370172
Google Scholar
[31]
V.V. Kuznetsov, A.S. Shamirzaev, Flow Boiling Heat Transfer of Refrigerant R-134a in Copper Microchannel Heat Sink, in: Heat Transf. Eng., Taylor and Francis Ltd., 2016: p.1105–1113. https://doi.org/10.1080/01457632.2015.1111103.
DOI: 10.1080/01457632.2015.1111103
Google Scholar
[32]
T. Dang, N. Tran, J.T. Teng, Numerical and experimental investigations on heat transfer phenomena of an aluminium microchannel heat sink, Appl. Mech. Mater. 145 (2012) 129–133. https://doi.org/10.4028/www.scientific.net/AMM.145.129.
DOI: 10.4028/www.scientific.net/amm.145.129
Google Scholar
[33]
A. Zadra, G. Robert, Dream recall frequency: Impact of prospective measures and motivational factors, Conscious. Cogn. 21 (2012) 1695–1702. https://doi.org/10.1016/j.concog.2012.08.011.
DOI: 10.1016/j.concog.2012.08.011
Google Scholar
[34]
A. Traverso, A.F. Massardo, R. Scarpellini, Externally Fired micro-Gas Turbine: Modelling and experimental performance, Appl. Therm. Eng. 26 (2006) 1935–1941. https://doi.org/10.1016/j.applthermaleng.2006.01.013.
DOI: 10.1016/j.applthermaleng.2006.01.013
Google Scholar
[35]
A. Sabahi Namini, A. Motallebzadeh, B. Nayebi, M. Shahedi Asl, M. Azadbeh, Microstructure–mechanical properties correlation in spark plasma sintered Ti–4.8 wt.% TiB2 composites, Mater. Chem. Phys. 223 (2019) 789–796. https://doi.org/10.1016/j.matchemphys.2018.11.057.
DOI: 10.1016/j.matchemphys.2018.11.057
Google Scholar
[36]
K.A. Al-attab, Z.A. Zainal, Performance of high-temperature heat exchangers in biomass fuel powered externally fired gas turbine systems, Renew. Energy. 35 (2010) 913–920. https://doi.org/10.1016/j.renene.2009.11.038.
DOI: 10.1016/j.renene.2009.11.038
Google Scholar
[37]
E. Zapata-Solvas, D.D. Jayaseelan, H.T. Lin, P. Brown, W.E. Lee, Mechanical properties of ZrB2- and HfB2-based ultra-high temperature ceramics fabricated by spark plasma sintering, J. Eur. Ceram. Soc. 33 (2013) 1373–1386. https://doi.org/10.1016/j.jeurceramsoc.2012.12.009.
DOI: 10.1016/j.jeurceramsoc.2012.12.009
Google Scholar
[38]
F. Monteverde, Ultra-high temperature HfB2-SiC ceramics consolidated by hot-pressing and spark plasma sintering, J. Alloys Compd. 428 (2007) 197–205. https://doi.org/10.1016/j.jallcom.2006.01.107.
DOI: 10.1016/j.jallcom.2006.01.107
Google Scholar
[39]
R. Königshofer, S. Fürnsinn, P. Steinkellner, W. Lengauer, R. Haas, K. Rabitsch, M. Scheerer, Solid-state properties of hot-pressed TiB2 ceramics, in: Int. J. Refract. Met. Hard Mater., Elsevier, 2005: p.350–357. https://doi.org/10.1016/j.ijrmhm.2005.05.006.
DOI: 10.1016/j.ijrmhm.2005.05.006
Google Scholar
[40]
F. Sadegh Moghanlou, M. Vajdi, J. Sha, A. Motallebzadeh, M. Shokouhimehr, M. Shahedi Asl, A numerical approach to the heat transfer in monolithic and SiC reinforced HfB2, ZrB2 and TiB2 ceramic cutting tools, Ceram. Int. 45 (2019) 15892–15897. https://doi.org/10.1016/j.ceramint.2019.05.095.
DOI: 10.1016/j.ceramint.2019.05.095
Google Scholar
[41]
T. Ai, F. Wang, X. Feng, M. Ruan, Microstructural and mechanical properties of dual Ti3AlC 2-Ti2AlC reinforced TiAl composites fabricated by reaction hot pressing, Ceram. Int. 40 (2014) 9947–9953. https://doi.org/10.1016/j.ceramint.2014.02.092.
DOI: 10.1016/j.ceramint.2014.02.092
Google Scholar
[42]
M. Vajdi, F. Sadegh Moghanlou, Z. Ahmadi, A. Motallebzadeh, M. Shahedi Asl, Thermal diffusivity and microstructure of spark plasma sintered TiB 2 [sbnd]SiC[sbnd]Ti composite, Ceram. Int. 45 (2019) 8333–8344. https://doi.org/10.1016/j.ceramint.2019.01.141.
DOI: 10.1016/j.ceramint.2019.01.141
Google Scholar
[43]
Z. Saleem, H. Rennebaum, F. Pudel, E. Grimm, Treating bast fibres with pectinase improves mechanical characteristics of reinforced thermoplastic composites, Compos. Sci. Technol. 68 (2008) 471–476. https://doi.org/10.1016/j.compscitech.2007.06.005.
DOI: 10.1016/j.compscitech.2007.06.005
Google Scholar
[44]
R.J. Kee, B.B. Almand, J.M. Blasi, B.L. Rosen, M. Hartmann, N.P. Sullivan, H. Zhu, A.R. Manerbino, S. Menzer, W.G. Coors, J.L. Martin, The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger, Appl. Therm. Eng. 31 (2011) 2004–2012. https://doi.org/10.1016/j.applthermaleng.2011.03.009.
DOI: 10.1016/j.applthermaleng.2011.03.009
Google Scholar
[45]
M. Sakkaki, F. Sadegh Moghanlou, M. Vajdi, F.Z. Pishgar, M. Shokouhimehr, M. Shahedi Asl, The effect of thermal contact resistance on the temperature distribution in a WC made cutting tool, Ceram. Int. 45 (2019) 22196–22202. https://doi.org/10.1016/j.ceramint.2019.07.241.
DOI: 10.1016/j.ceramint.2019.07.241
Google Scholar
[46]
M. Mallik, A.J. Kailath, K.K. Ray, R. Mitra, Electrical and thermophysical properties of ZrB 2 and HfB 2 based composites, J. Eur. Ceram. Soc. 32 (2012) 2545–2555. https://doi.org/10.1016/j.jeurceramsoc.2012.02.013.
DOI: 10.1016/j.jeurceramsoc.2012.02.013
Google Scholar
[47]
J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, R.B. Dinwiddie, W.D. Porter, H. Wang, Thermophysical Properties of ZrB 2 and ZrB 2 –SiC Ceramics, J. Am. Ceram. Soc. 91 (2008) 1405–1411. https://doi.org/10.1111/j.1551-2916.2008.02268.x.
DOI: 10.1111/j.1551-2916.2008.02268.x
Google Scholar
[48]
S.Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: A review, J. Eur. Ceram. Soc. 29 (2009) 995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008.
Google Scholar
[49]
M. Khoeini, A. Nemati, M. Zakeri, M. Shahedi Asl, Pressureless sintering of ZrB 2 ceramics codoped with TiC and graphite, Int. J. Refract. Met. Hard Mater. 81 (2019) 189–195. https://doi.org/10.1016/j.ijrmhm.2019.02.026.
DOI: 10.1016/j.ijrmhm.2019.02.026
Google Scholar
[50]
M. Shahedi Asl, Y. Azizian-Kalandaragh, Z. Ahmadi, A. Sabahi Namini, A. Motallebzadeh, Spark plasma sintering of ZrB2-based composites co-reinforced with SiC whiskers and pulverized carbon fibers, Int. J. Refract. Met. Hard Mater. 83 (2019) 104989. https://doi.org/10.1016/j.ijrmhm.2019.104989.
DOI: 10.1016/j.ijrmhm.2019.104989
Google Scholar
[51]
N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, M. Shahedi Asl, Advantages and disadvantages of graphite addition on the characteristics of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 8561–8566. https://doi.org/10.1016/j.ceramint.2019.12.086.
DOI: 10.1016/j.ceramint.2019.12.086
Google Scholar
[52]
S. Nekahi, M. Vajdi, F. Sadegh Moghanlou, K. Vaferi, A. Motallebzadeh, M. Özen, U. Aydemir, J. Sha, M. Shahedi Asl, TiB2–SiC-based ceramics as alternative efficient micro heat exchangers, Ceram. Int. 45 (2019) 19060–19067. https://doi.org/10.1016/j.ceramint.2019.06.150.
DOI: 10.1016/j.ceramint.2019.06.150
Google Scholar
[53]
M. Vajdi, F. Sadegh Moghanlou, E. Ranjbarpour Niari, M. Shahedi Asl, M. Shokouhimehr, Heat transfer and pressure drop in a ZrB2 microchannel heat sink: A numerical approach, Ceram. Int. 46 (2020) 1730–1735. https://doi.org/10.1016/j.ceramint.2019.09.146.
DOI: 10.1016/j.ceramint.2019.09.146
Google Scholar
[54]
F. Sadegh, M. Vajdi, A. Motallebzadeh, J. Sha, Numerical analyses of heat transfer and thermal stress in a ZrB 2 gas turbine stator blade, Ceram. Int. 45 (2019) 17742–17750. https://doi.org/10.1016/j.ceramint.2019.05.344.
DOI: 10.1016/j.ceramint.2019.05.344
Google Scholar
[55]
S. Nekahi, K. Vaferi, M. Vajdi, F. Sadegh Moghanlou, M. Shahedi Asl, M. Shokouhimehr, A numerical approach to the heat transfer and thermal stress in a gas turbine stator blade made of HfB2, Ceram. Int. 45 (2019) 24060–24069. https://doi.org/10.1016/j.ceramint.2019.08.112.
DOI: 10.1016/j.ceramint.2019.08.112
Google Scholar
[56]
S.A. Delbari, A. Sabahi Namini, M. Shahedi Asl, Hybrid Ti matrix composites with TiB2 and TiC compounds, Mater. Today Commun. 20 (2019) 100576. https://doi.org/10.1016/j.mtcomm.2019.100576.
DOI: 10.1016/j.mtcomm.2019.100576
Google Scholar
[57]
P. Fallahazad, N. Naderi, M.J. Eshraghi, A. Massoudi, Optimization of Chemical Texturing of Silicon Wafers Using Different Concentrations of Sodium Hydroxide in Etching Solution, Adv. Ceram. Prog. 3 (2017) 16–18. https://doi.org/10.30501/ACP.2017.90753.
Google Scholar
[58]
F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma, Ceram. Int. 45 (2019) 5306–5311. https://doi.org/10.1016/j.ceramint.2018.11.228.
DOI: 10.1016/j.ceramint.2018.11.228
Google Scholar
[59]
L. Zhang, D.A. Pejaković, J. Marschall, M. Gasch, Thermal and Electrical Transport Properties of Spark Plasma-Sintered HfB2 and ZrB2 Ceramics, J. Am. Ceram. Soc. 94 (2011) 2562–2570. https://doi.org/10.1111/j.1551-2916.2011.04411.x.
DOI: 10.1111/j.1551-2916.2011.04411.x
Google Scholar
[60]
J.W. Lawson, C.W. Bauschlicher, M.S. Daw, Ab Initio Computations of Electronic, Mechanical, and Thermal Properties of ZrB 2 and HfB 2, J. Am. Ceram. Soc. 94 (2011) 3494–3499. https://doi.org/10.1111/j.1551-2916.2011.04649.x.
DOI: 10.1111/j.1551-2916.2011.04649.x
Google Scholar
[61]
E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort, F. Guitierrez-Mora, Designing for ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx and αHf(N), in: J. Mater. Sci., Springer, 2004: p.5939–5949. https://doi.org/10.1023/B:JMSC.0000041690.06117.34.
DOI: 10.1023/b:jmsc.0000041690.06117.34
Google Scholar
[62]
B.G. Carman, J.S. Kapat, L.C. Chow, L. An, Impact of a ceramic microchannel heat exchanger on a micro turbine, in: Am. Soc. Mech. Eng. Int. Gas Turbine Institute, Turbo Expo IGTI, American Society of Mechanical Engineers Digital Collection, 2002: p.1053–1060. https://doi.org/10.1115/GT2002-30544.
DOI: 10.1115/gt2002-30544
Google Scholar
[63]
V. Nagarajan, Y. Chen, Q. Wang, T. Ma, Hydraulic and thermal performances of a novel configuration of high temperature ceramic plate-fin heat exchanger, Appl. Energy. 113 (2014) 589–602. https://doi.org/10.1016/j.apenergy.2013.07.037.
DOI: 10.1016/j.apenergy.2013.07.037
Google Scholar
[64]
M. Fattahi, K. Vaferi, M. Vajdi, F. Sadegh Moghanlou, A. Sabahi Namini, M. Shahedi Asl, Aluminum nitride as an alternative ceramic for fabrication of microchannel heat exchangers: A numerical study, Ceram. Int. (2020) 0–1. https://doi.org/10.1016/j.ceramint.2020.01.195.
DOI: 10.1016/j.ceramint.2020.01.195
Google Scholar
[65]
P. Bhattacharya, A.N. Samanta, S. Chakraborty, Numerical study of conjugate heat transfer in rectangular microchannel heat sink with Al2O3/H2O nanofluid, Heat Mass Transf. Und Stoffuebertragung. 45 (2009) 1323–1333. https://doi.org/10.1007/s00231-009-0510-0.
DOI: 10.1007/s00231-009-0510-0
Google Scholar
[66]
F. Nakamori, Y. Ohishi, H. Muta, K. Kurosaki, K. Fukumoto, S. Yamanaka, Mechanical and thermal properties of bulk ZrB2, J. Nucl. Mater. 467 (2015) 612–617. https://doi.org/10.1016/j.jnucmat.2015.10.024.
DOI: 10.1016/j.jnucmat.2015.10.024
Google Scholar
[67]
R.G. Munro, Material properties of titanium diboride, J. Res. Natl. Inst. Stand. Technol. 105 (2000) 709. https://doi.org/10.6028/jres.105.057.
DOI: 10.6028/jres.105.057
Google Scholar