Thermal Degradation of Natural Rubber Vulcanizates Reinforced with Organomodified Kaolin Intercalates

Article Preview

Abstract:

In this study, Natural Rubber Vulcanizates (NRV) reinforced with organomodified kaolin was developed. The NRV were subjected to thermal degradation to ascertain its suitability for high-temperature automotive applications. Kaolin intercalation was achieved using derivatives of Rubber seed oil (Hevea brasiliensis) and Tea seed oil (Camellia sinensis) in the presence of hydrazine hydrate as co-intercalate. The developed Natural Rubber Vulcanizates were characterised using Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM). FTIR spectra obtained for the organomodified natural rubber vulcanizates revealed the presence of carbonyl groups at bands 1564cm-1 and 1553cm-1 which is an indication of organomodified kaolin intercalation within the Natural Rubber matrix for kaolin intercalates of Rubber seed oil and Tea seed oil respectively while no value was reported for the Natural Rubber vulcanizates obtained from the pristine kaolin filler. TGA results indicated that NRV developed from kaolin intercalates of Rubber seed oil (RSO) with onset degradation and final degradation temperatures of 354.2°C and 601.3°C were found to be the most thermally stable of the Natural Rubber Vulcanizates investigated. The SEM micrograph revealed that the kaolin nanofillers in Rubber Seed Oil modified Natural Rubber Vulcanizates were well dispersed as compared to that of Tea Seed Oil modified Natural Rubber Vulcanizates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-58

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.R.G. Treloar, The Elasticity and Related Properties of Rubbers, Rubber Chem. Technol. 47 (1974) 625–696.

DOI: 10.5254/1.3540456

Google Scholar

[2] A. Ciesielski, An Introduction to Rubber Technology, Rapra Technology Limited, Shropshire, 1999. http://en.tafp.org.tw/ebooks/download/asin=1859571506&type=stream (accessed September 23, 2017).

Google Scholar

[3] Treloar, L.R.G. (1958) Physics of Rubber Elasticity. 2nd Edition, Oxford University Press, London. - References - Scientific Research Publishing, (n.d.). https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=2054067 (accessed October 19, 2019).

Google Scholar

[4] M. Bijarimi, H. Zulkafli, M.D.H. Beg, Mechanical properties of industrial tyre rubber compounds, J. Appl. Sci. 10 (2010) 1345–1348.

DOI: 10.3923/jas.2010.1345.1348

Google Scholar

[5] N. Hayeemasae, A. Masa, Relationship between stress relaxation behavior and thermal stability of natural rubber vulcanizates, Polimeros. 30 (2020).

DOI: 10.1590/0104-1428.03120

Google Scholar

[6] H.G.I.M. Wijesinghe, U.N. Ratnayake, A. Alakolanga, N.S. Withanage, Raw rubber and viscoelastic properties of organoclay filled latex crepe rubber, J. Rubber Res. Inst. Sri Lanka. 95 (2015) 39.

DOI: 10.4038/jrrisl.v95i0.1835

Google Scholar

[7] G. (Gert) Heinrich, G.C. Basak, Advanced rubber composites, Springer, (2011).

Google Scholar

[8] J. Sapkota, Influence of Clay Modification on Curing Kinetics of Natural Rubber Nanocomposites, Tampere University of Technology, 2011. https://dspace.cc.tut.fi/dpub/handle/123456789/20785?show=full (accessed September 24, 2017).

Google Scholar

[9] M. Arroyo, M.A. López-Manchado, B. Herrero, Organo-montmorillonite as substitute of carbon black in natural rubber compounds, Polymer (Guildf). 44 (2003) 2447–2453.

DOI: 10.1016/s0032-3861(03)00090-9

Google Scholar

[10] M.C.W. Somaratne, Reinforcement of Natural Rubber Latex Films with Fine Particle Fillers, University of Moratuwa, (2013).

Google Scholar

[11] N.T. Quang, D.V. Hung, B. Chuong, H. Nam, N.T. Yen, Study on the effect of modified and unmodified silica on the properties of natural rubber vulcanizates, Vietnam J. Chem. 57 (2019) 357–362.

DOI: 10.1002/vjch.201900040

Google Scholar

[12] C.C. Ihueze, C.O. Mgbemena, Static analysis of a P195 / 55 R16 85H radial tire developed from natural rubber / tea seed oil ( Camellia sinensis ) modified kaolin vulcanizates, Am. J. Mech. Eng. Autom. 1 (2014) 31–37.

DOI: 10.9734/jsrr/2014/11587

Google Scholar

[13] C.O. Mgbemena, C.C. Ihueze, A.R.R. Menon, Performance characteristics and analysis of tailored Natural Rubber/Organo-kaolin Composites, Int. J. Plast. Technol. 20 (2016) 11–27.

DOI: 10.1007/s12588-016-9142-7

Google Scholar

[14] C.O. Mgbemena, T.E. Boye, I. Emovon, Static Analysis of a Tire Sidewall Developed From Tailored Organomodified Kaolin/Natural Rubber Vulcanizates, J. Adv. Eng. Comput. 1 (2017) 106.

DOI: 10.25073/jaec.201712.83

Google Scholar

[15] C. Ihueze, C. Mgbemena, Modeling Hyperelastic Behavior of Natural Rubber/Organomodified Kaolin Composites Oleochemically Derived from Tea Seed Oils (Camellia sinensis) for Automobile Tire Side Walls Application, J. Sci. Res. Reports. 3 (2014) 2528–2542.

DOI: 10.9734/jsrr/2014/11587

Google Scholar

[16] M. Wu, N. Vennemann, M. Heinz, Investigation of Un-Vulcanized Natural Rubber by Means of Temperature Scanning Stress Relaxation Measurements, (n.d.).

DOI: 10.4028/www.scientific.net/amr.718-720.117

Google Scholar

[17] S. Trangadisaikul, Oligopsony in the Tire Industry: A Study of its Impacts on the Natural Rubber Industry in Thailand, Charles Sturt University, 2009. http://web.mit.edu/course/21/21.guide/toc.htm (accessed July 8, 2017).

Google Scholar

[18] J.W. Yu, J. Jung, Y.-M. Choi, J.H. Choi, J. Yu, J.K. Lee, N.-H. You, M. Goh, Enhancement of the crosslink density, glass transition temperature, and strength of epoxy resin by using functionalized graphene oxide co-curing agents, Polym. Chem. 7 (2016) 36–43.

DOI: 10.1039/c5py01483b

Google Scholar

[19] C.O. Mgbemena, C.C. Ihueze, A.R.R. Menon, Performance characteristics and analysis of tailored Natural Rubber/Organo-kaolin Composites, Int. J. Plast. Technol. (2016).

DOI: 10.1007/s12588-016-9142-7

Google Scholar

[20] C.O. Mgbemena, N.O. Ibekwe, R. Sukumar, A.R.R. Menon, Characterization of kaolin intercalates of oleochemicals derived from rubber seed (Hevea brasiliensis) and tea seed (Camelia sinensis) oils, J. King Saud Univ. - Sci. 25 (2013) 149–155.

DOI: 10.1016/j.jksus.2012.11.004

Google Scholar

[21] C.O. Mgbemena, C.E. Mgbemena, F.I. Ashiedu, A.R.R. Menon, Static analysis of tyre model developed from Natural Rubber vulcanizates, in: Lect. Notes Eng. Comput. Sci., (2016).

Google Scholar

[22] R. Ramakrishnan, J.D. Sudha, V.L. Reena, Nanostructured polyaniline-polytitanate-clay composite for photocatalytic applications: preparation and properties, RSC Adv. 2 (2012) 6228.

DOI: 10.1039/c2ra20613g

Google Scholar

[23] N. Hasegawa, M. Kawasumi, M. Kato, A. Ukudi, A. Okada, Preparation and mechanical properties of polypropylene-clay hybrids using a maleic-anhydride grafted polypropylene oligomer, J. Appl. Polym. Sci. 67 (1998) 87–92.

DOI: 10.1002/(sici)1097-4628(19980103)67:1<87::aid-app10>3.0.co;2-2

Google Scholar

[24] P.L. Teh, Z.A.M. Ishak, A.S. Hashim, J. Karger-Kocsis, U.S. Ishiaku, Effects of epoxidized natural rubber as a compatibilizer in melt comp ounded natur al rubber-organoclay nanocomposites, Eur. Polym. J. 40 (2004) 2513–2521.

DOI: 10.1016/j.eurpolymj.2004.06.025

Google Scholar

[25] J.M. Lagaron, L. Cabedo, D. Cava, J.L. Feijoo, R. Gavara, E. Gimenez, Improving packaged food quality and safety. Part 2: Nanocomposites, Food Addit. Contam. 22 (2005) 994–998.

DOI: 10.1080/02652030500239656

Google Scholar

[26] M. Sedničková, D.J. Mošková, I. Janigová, J. Kronek, L. Jankovič, M. Šlouf, I. Chodák, Properties of natural rubber composites with structurally different clay intercalable surfactants, J Polym Res. 24 (2017) 1–13.

DOI: 10.1007/s10965-017-1261-0

Google Scholar

[27] A.Y. Coran, Vulcanization. Part VI. A Model and Treatment for Scorch Delay Kinetics, Rubber Chem. Technol. 37 (1964) 689–697.

DOI: 10.5254/1.3540362

Google Scholar

[28] A.K. Krishnan, T.S. George, R. Anjana, N. Joseph, K.E. George, Effect of modified kaolin clays on the mechanical properties of polypropylene/polystyrene blends, J. Appl. Polym. Sci. 127 (2013) 1409–1415.

DOI: 10.1002/app.38043

Google Scholar