Rheological Characterization of Emulsified Bitumen from Industrial Waste

Article Preview

Abstract:

Emulsified bitumen is an aqueous mixture of bitumen and can be used in insulation and coating applications. In this study, used automotive oil was utilized as a component in bitumen emulsion formulation. Five formulations of bitumen emulsion comprising different ratios of neat bitumen and recycled automotive oil were formulated, namely EMB01–EMB05. The formulation utilized 1 g of abietic acid (C20H30O2) as an emulsifier. The formulated bitumen was characterized for penetration, softening point, differential scanning calorimetry, viscosity, and oscillatory test, and the results were compared to commercial bitumen emulsion (ATLAS bitumen emulsion). The results show that EMB05 has softer consistency, high viscosity, temperature susceptibility, higher thermal stability, and an adaptable viscoelastic range compared to other formulations that provide suitable properties for coating and insulation of wall waterproof material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-157

Citation:

Online since:

April 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Li, J. Zhai, H. Li, X. Gao, An integration recycling process for cascade utilization of waste engine oil by distillation and microwave-assisted pyrolysis, Fuel Process. Technol. 199 (2020) 106245. doi:https://doi.org/10.1016/j.fuproc.2019.106245.

DOI: 10.1016/j.fuproc.2019.106245

Google Scholar

[2] M.T. Rahman, A. Mohajerani, F. Giustozzi, Recycling of Waste Materials for Asphalt Concrete and Bitumen: A Review, Mater. (Basel, Switzerland). 13 (2020) 1495.

DOI: 10.3390/ma13071495

Google Scholar

[3] A. Eleyedath, A.K. Swamy, 3 - Use of waste engine oil in materials containing asphaltic components, in: F. Pacheco-Torgal, S. Amirkhanian, H. Wang, E.B.T.-E.-E.P.C.M. Schlangen (Eds.), Woodhead Publ. Ser. Civ. Struct. Eng., Woodhead Publishing, 2020: p.33–50. doi:https://doi.org/10.1016/B978-0-12-818981-8.00003-5.

DOI: 10.1016/b978-0-12-818981-8.00003-5

Google Scholar

[4] A. Woszuk, M. Wróbel, W. Franus, Influence of Waste Engine Oil Addition on the Properties of Zeolite-Foamed Asphalt, Mater. (Basel, Switzerland). 12 (2019).

DOI: 10.3390/ma12142265

Google Scholar

[5] S. Hou, C. Chen, J. Zhang, H. Shen, F. Gu, Thermal and mechanical evaluations of asphalt emulsions and mixtures for microsurfacing, Constr. Build. Mater. 191 (2018) 1221–1229.

DOI: 10.1016/j.conbuildmat.2018.10.091

Google Scholar

[6] O.N. Burenina, M.E. Savvinova, A. V Andreeva, The Effectiveness of Using Bitumen Emulsion in the Technology of Dedusting Roads with a Transitional Type of Coating, Mater. Sci. Forum. 992 (2020) 9–14.

DOI: 10.4028/www.scientific.net/msf.992.9

Google Scholar

[7] A. Khan, P. Redelius, N. Kringos, Effects of surfactants and adhesion promoters on the bitumen-minerals interfacial bond during breaking of bitumen emulsions, (n.d.). http://kth.diva-portal.org/smash/get/diva2:1184457/FULLTEXT01.pdf.

Google Scholar

[8] L. Boucard, V. Schmitt, E. Chailleux, F. Farcas, V. Gaudefroy, Bitumen-in-water emulsion: Destabilization by electrolyte solutions and rheological evaluation, in: 6th Eurasphalt Eurobitume Congr., 2016.

DOI: 10.14311/ee.2016.168

Google Scholar

[9] F. Goodarzi, S. Zendehboudi, A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy Industries, Can. J. Chem. Eng. 97 (2019) 281–309. doi:https://doi.org/10.1002/cjce.23336.

DOI: 10.1002/cjce.23336

Google Scholar

[10] V. Carrera, A.A. Cuadri, M. García-Morales, P. Partal, The development of polyurethane modified bitumen emulsions for cold mix applications, Mater. Struct. Constr. 48 (2015) 3407–3414.

DOI: 10.1617/s11527-014-0408-2

Google Scholar

[11] M. Iwański, A. Chomicz-Kowalska, Laboratory Study on Mechanical Parameters of Foamed Bitumen Mixtures in the Cold Recycling Technology, Procedia Eng. 57 (2013) 433–442.

DOI: 10.1016/j.proeng.2013.04.056

Google Scholar

[12] A.A. Haleem Khan, S. Mohan Karuppayil, Fungal pollution of indoor environments and its management, Saudi J. Biol. Sci. 19 (2012) 405–426.

DOI: 10.1016/j.sjbs.2012.06.002

Google Scholar

[13] M.A. Egbuta, M. Mwanza, O.O. Babalola, Health Risks Associated with Exposure to Filamentous Fungi., Int. J. Environ. Res. Public Health. 14 (2017).

DOI: 10.3390/ijerph14070719

Google Scholar

[14] S.N. Baxi, J.M. Portnoy, D. Larenas-Linnemann, W. Phipatanakul, C. Barnes, C. Grimes, W.E. Horner, K. Kennedy, E. Levetin, J.D. Miller, J. Scott, B. Williams, Exposure and Health Effects of Fungi on Humans, J. Allergy Clin. Immunol. Pract. 4 (2016) 396–404.

DOI: 10.1016/j.jaip.2016.01.008

Google Scholar

[15] A. Graziani, E. Pasquini, G. Ferrotti, A. Virgili, F. Canestrari, Structural response of grid-reinforced bituminous pavements, Mater. Struct. 47 (2014) 1391–1408.

DOI: 10.1617/s11527-014-0255-1

Google Scholar

[16] C. Oliviero Rossi, A. Spadafora, B. Teltayev, G. Izmailova, Y. Amerbayev, V. Bortolotti, Polymer modified bitumen: Rheological properties and structural characterization, Colloids Surfaces A Physicochem. Eng. Asp. 480 (2015) 390–397.

DOI: 10.1016/j.colsurfa.2015.02.048

Google Scholar

[17] Y. Cheng, W. Wang, G. Tan, C. Shi, Assessing high- and low-temperature properties of asphalt pavements incorporating waste oil shale as an alternative material in Jilin Province, China, Sustainability. 10 (2018).

DOI: 10.3390/su10072179

Google Scholar

[18] M. Ali, Mixture characteristics of buton rock asphalt, Universiti Tun Hussein Onn Malaysia, (2011).

DOI: 10.30880/ijie.2022.14.05.005

Google Scholar

[19] S. Ammann, A. Ammann, R. Ravotti, L.J. Fischer, A. Stamatiou, J. Worlitschek, Effective Separation of a Water in Oil Emulsion from a Direct Contact Latent Heat Storage System, Energies. 11 (2018) 1–15.

DOI: 10.3390/en11092264

Google Scholar

[20] National Research Council, Coatings for High-Temperature Structural Materials: Trends and Opportunities, The National Academies Press, Washington, DC, 1996.

Google Scholar

[21] S. Yero, M. Hainin, Viscosity Characteristics of Modified Bitumen, ARPN J. Sci. Technol. 2 (2011) 500–503. http://www.ejournalofscience.org/archive/vol2no5/vol2no5_15.pdf.

Google Scholar

[22] D. V. Rosato, D. V. Rosato, Plastics Engineered Product Design, Elsevier Ltd, 2003.

Google Scholar

[23] E. Remišová, M. Holý, Changes of Properties of Bitumen Binders by Additives Application, in: IOP Conf. Ser. Mater. Sci. Eng., Institute of Physics Publishing, 2017.

DOI: 10.1088/1757-899x/245/3/032003

Google Scholar

[24] H. Murata, Rheology - Theory and Application to Biomaterials, in: Polymerization, InTech, 2012.

Google Scholar

[25] A.M.O. Zapata, S. Rodríguez-Barona, G.I.G. Gómez, Rheological characterization and stability study of an emulsion made with a dairy by-product enriched with omega-3 fatty acids, Brazilian J. Food Technol. 18 (2015) 23–30.

DOI: 10.1590/1981-6723.2014

Google Scholar

[26] C.W. Macosko, Rheology : principles, measurements, and applications, VCH, (1994).

Google Scholar

[27] H. Zhai, D. Salomon, E. Milliron, Using Rheological Properties to Evaluate Storage Stability and Setting Behaviors of Emulsified asphalts, Idaho Asph. Supply, Inc. White Pap. Idaho. (2006) 1–10.

Google Scholar

[28] T. Shoukat, P.J. Yoo, Rheology of Asphalt Binder Modified with 5W30 Viscosity Grade Waste Engine Oil, Appl. Sci. . 8 (2018).

DOI: 10.3390/app8071194

Google Scholar

[29] C. Oliviero Rossi, B. Teltayev, R. Angelico, Adhesion Promoters in Bituminous Road Materials: A Review, Appl. Sci. 7 (2017) 524.

DOI: 10.3390/app7050524

Google Scholar

[30] G. Xu, H. Wang, Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation, Comput. Mater. Sci. 112 (2016) 161–169.

DOI: 10.1016/j.commatsci.2015.10.024

Google Scholar