Estimation of Microwave Absorption Properties of RGO-SiC-LLDPE Composites

Article Preview

Abstract:

The present work investigate the microwave absorption properties of reduced graphene oxide (RGO)-Silicon carbide (SiC)-Linear low-density polyethylene (LLDPE) composites prepared in different concentration of fillers(10, 20, 30, 40 wt. %) with LLDPE matrix. Synthesis of RGO is confirmed from XRD analysis and SiC is used as received from supplier. Complex permittivity of the composites is measured using Nicolson Ross method showing an increasing trend with increasing filler concentrations with maximum and for 40 wt. % composite sample. Based on transmission line theory and using measured value of complex permittivity, conductor backed single and double layer absorber is designed by thickness optimization. The calculated reflection loss (RLc) value of ~-71 dB at 11.23 GHz is observed for 40 wt. % composite sample of 7 mm thickness with -10 dB absorption bandwidth of 1.48 GHz and -20 dB bandwidth of 0.64 GHz.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-97

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Meng, H. Wang,F.Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Graphene-based microwave absorbing composites: A review and prospective,, Journal Composites Part B: Engineering, Vol 137, 260-277, (2018).

DOI: 10.1016/j.compositesb.2017.11.023

Google Scholar

[2] H.Abbasi, M. Antunes, J. I. Velasco, Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding,, Progress in Materials Science, Vol. 103, pp.319-373, (2019).

DOI: 10.1016/j.pmatsci.2019.02.003

Google Scholar

[3] C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material,, Appl. Phys. Lett. vol.98, p.072906 ,(2011).

DOI: 10.1063/1.3555436

Google Scholar

[4] X. Liu, Z. Zhang, Y. Wu, Absorption properties of carbon black/silicon carbide microwave absorbers,, Composites: Part B, vol. 42, p.326–329, (2011).

DOI: 10.1016/j.compositesb.2010.11.009

Google Scholar

[5] W.S. Hummers and R.E. Offeman, Preparation of Graphitic Oxide,,J Am Chem. Soc; vol. 80(6), p.1339, (1958).

DOI: 10.1021/ja01539a017

Google Scholar

[6] N. Cao and Y. Zhang, Study of Reduced Graphene Oxide Preparation by Hummers' Method and Related Characterization,, Journal of Nanomaterials Article ID 168125, 2015, http://dx.doi.org/10.1155/2015/168125.

DOI: 10.1155/2015/168125

Google Scholar

[7] P.J. Gogoi, S. Bhattacharyya, and N.S. Bhattacharyya,Linear Low Density Polyethylene (LLDPE) as Flexible Substrate for Wrist and Arm Antennas in C-Band,, J. Electron.Mater.vol.44, p.1071, (2015).

DOI: 10.1007/s11664-015-3629-4

Google Scholar

[8] Pratten, N.A. The precise measurement of the density of small samples, Journal of Material Science16, 1737-1747, (1981).

Google Scholar

[9] D.Y. Pan, S. Wang, B. Zhao, M.H. Wu, H.J. Zhang, Y. Wang, Z. Jiao, Li Storage Properties of Disordered GrapheneNanosheets,, Chem. Mater. Vol.21, p.3136–3142, (2009).

DOI: 10.1021/cm900395k

Google Scholar

[10] A.L. Ortiz, F. Sanchez-Bajo, F.L. Cumbrera, F. Guiberteau, X-ray powder diffraction analysis of a silicon carbide-based ceramic,, Materials Letters vol.49,p.137–145, (2001).

DOI: 10.1016/s0167-577x(00)00358-x

Google Scholar

[11] S. Sunderrajan, L. R. Miranda and G. Pennathur, Improved stability and catalytic activity of graphene oxide/chitosan hybrid beads loaded with porcine liver esterase,,Prep. Biochem.Biotechnol. Vol.48(4), pp.343-35, (2018).

DOI: 10.1080/10826068.2018.1446153

Google Scholar

[12] L.S. Eui, C. Oyoung, H.T. Hahn, Microwave properties of graphite nanoplatelet/epoxy composites,, J. Appl. Phys. Vol. 104, pp.033705-1–5-7, (2008).

Google Scholar

[13] X.F. Zhang, P.F. Guan, X.L. Dong,Multidielectric polarizations in the core/shell Co/graphite nanoparticles,, Appl. Phys. Lett., vol. 96, p.223111, (2010).

DOI: 10.1063/1.3446868

Google Scholar

[14] U. J. Mahanta, J. P. Gogoi, D. Borah and N. S. Bhattacharyya, Dielectric characterization and microwave absorption of expanded graphite integrated polyaniline multiphase nanocomposites in X-band,, IEEE Trans DielectrElectrInsul, vol. 26, no. 1, pp.194-201, (2019).

DOI: 10.1109/tdei.2018.007443

Google Scholar

[15] Y. Zhang, S. Gao, H. Xing, Reduced graphene oxide wrapped cube-like ZnSnO3: As a high-performance microwave absorber,, Journal of Alloys and Compounds Vol. 777, pp.544-553, (2019).

DOI: 10.1016/j.jallcom.2018.10.378

Google Scholar

[16] U.J. Mahanta, N.S. Bhattacharyya, I. Hussain, P.J. Gogoi, J.P. Gogoi (2019) Design Optimization and Fabrication of Wideband Microwave Absorber Based on Dual Phase Dielectric-Semi Metallic Nanocomposite,, J PhysChem Solids, vol. 127, pp.202-212,(2019).

DOI: 10.1016/j.jpcs.2018.12.027

Google Scholar

[17] N.K. Rozanov, Ultimate Thickness to Bandwidth Ratio of Radar Absorbers,, IEEE. Trans. Antenn. Propag., vol. 48(8), pp.1230-34,(2000).

DOI: 10.1109/8.884491

Google Scholar

[18] D. Micheli, C. Apollo, R. Pastore, and M. Marchetti, X-Band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation, ,Compos.Sci. Technol. Vol. 70, p.400, (2010).

DOI: 10.1016/j.compscitech.2009.11.015

Google Scholar

[19] L.Zhang, H. Zhu, Y.Song, Y. Zhang, Y. Huanga, The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3 nanoparticles as microwave absorbers,, Mater. Sci. Eng. B. vol.153, 78–82 (2008).

DOI: 10.1016/j.mseb.2008.10.029

Google Scholar