Ballistic Performance Evaluation of Kevlar-Glass Fibre Hybrid Composite Laminate against Medium Velocity Impact

Article Preview

Abstract:

In this paper, the post ballistic impact behaviour of kevlar-glass fibre hybrid composite laminates was investigated against 9×19 mm projectile. Eight different types of composite laminates with different ratios of kevlar woven fibre to glass fibre were fabricated using hand lay-up with epoxy matrix. Ballistic behaviour like ballistic Limit (V50), energy absorption, specific energy absorption and Back Face Signature (BFS) were studied after bullet impact. The results indicated that as the Percentage of glass fibre is increased there was a linear increment in the ballistic behaviour. Addition of 16% kevlar fabric, composite sample meets the performance requirement of NIJ0101.06 Level III-A. Since the maximum specific energy absorption was observed in Pure Kevlar samples and the adding of glass fibre increases the weight and Areal Density of the sample, further investigations need to be carried out to utilize the potential of glass fibre for ballistic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

47-64

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Shaari, A. Jumahat, and M. K. M. Razif, Impact resistance properties of Kevlar/glass fiber hybrid composite laminates,, Jurnal Teknologi, vol. 76, no. 3, p.93–99, 2015,.

DOI: 10.11113/jt.v76.5520

Google Scholar

[2] S. L. Valenҫa, S. Griza, V. G. de Oliveira, E. M. Sussuchi, and F. G. C. de Cunha, Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric,, Composites Part B: Engineering, vol. 70, p.1–8, 2015,.

DOI: 10.1016/j.compositesb.2014.09.040

Google Scholar

[3] S. Fidan, T. Sinmazcelik, E. Avcu, M. O. Bora, and O. Coban, Detecting impact damages in an aramid/glass fiber reinforced hybrid composite with micro tomography,, Advanced Materials Research, vol. 445, p.9–14, 2012,.

DOI: 10.4028/www.scientific.net/amr.445.9

Google Scholar

[4] M. M. Ansari and A. Chakrabarti, Behaviour of GFRP composite plate under ballistic impact: Experimental and FE analyses,, Structural Engineering and Mechanics, vol. 60, no. 5, p.829–849, 2016,.

DOI: 10.12989/sem.2016.60.5.829

Google Scholar

[5] X. Xu, Z. Zhou, Y. Hei, B. Zhang, J. Bao, and X. Chen, Improving compression-after-impact performance of carbon-fiber composites by CNTs/thermoplastic hybrid film interlayer,, Composites Science and Technology, vol. 95, p.75–81, 2014,.

DOI: 10.1016/j.compscitech.2014.01.023

Google Scholar

[6] M. T. H. Sultan, S. Basri, A. S. M. Rafie, F. Mustapha, D. L. Majid, and M. R. Ajir, High velocity impact damage analysis for glass epoxy - Laminated plates,, Advanced Materials Research, vol. 399–401, p.2318–2328, 2012,.

DOI: 10.4028/www.scientific.net/amr.399-401.2318

Google Scholar

[7] E. Randjbaran, R. Zahari, N. A. Abdul Jalil, and D. L. Abang Abdul Majid, Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing,, The Scientific World Journal, vol. 2014, p.413753, 2014,.

DOI: 10.1155/2014/413753

Google Scholar

[8] J. Gustin, A. Joneson, M. Mahinfalah, and J. Stone, Low velocity impact of combination Kevlar/carbon fiber sandwich composites,, Composite Structures, vol. 69, no. 4, p.396–406, 2005,.

DOI: 10.1016/j.compstruct.2004.07.020

Google Scholar

[9] K. S. Pandya, J. R. Pothnis, G. Ravikumar, and N. K. Naik, Ballistic impact behavior of hybrid composites,, Materials and Design, vol. 44, no. February, p.128–135, 2013,.

DOI: 10.1016/j.matdes.2012.07.044

Google Scholar

[10] R.J. Muhi, F. Najim, and M. F. S. F. de Moura, The effect of hybridization on the GFRP behavior under high velocity impact,, Composites Part B: Engineering, vol. 40, no. 8, p.798–803, 2009,.

DOI: 10.1016/j.compositesb.2009.08.002

Google Scholar

[11] B. Z. Jang, L. C. Chen, C. Z. Wang, H. T. Lin, and R. H. Zee, Impact resistance and energy absorption mechanisms in hybrid composites,, Composites Science and Technology, vol. 34, no. 4, p.305–335, 1989,.

DOI: 10.1016/0266-3538(89)90002-x

Google Scholar

[12] K. H. Ghlaim, H. Tawfiq, and A. Hussain Al-Hilli, Effects of Hybrid Arrangement and Location of the Stronger Layer on the Impact Resistance of Composite Plate Target,, Journal of Engineering and Development, vol. 13, no. 1, (2009).

Google Scholar

[13] M. B. Mukasey, J. L. Sedgwick, and D. W. Hagy, Ballistic Resistance of Body Armor,, NIJ Standard - 0101-16, p.1–89, (2008).

Google Scholar

[14] D. of Defense, Mil-Std-662F Test Method Standard V 50 Ballistic Test for Armor,, no. January 1987, (1997).

Google Scholar

[15] D. Zhang, Y. Sun, L. Chen, S. Zhang, and N. Pan, Influence of fabric structure and thickness on the ballistic impact behavior of Ultrahigh molecular weight polyethylene composite laminate,, Materials and Design, vol. 54, 2014,.

DOI: 10.1016/j.matdes.2013.08.074

Google Scholar

[16] P. Wambua, B. Vangrimde, S. Lomov, and I. Verpoest, The response of natural fibre composites to ballistic impact by fragment simulating projectiles,, Composite Structures, vol. 77, no. 2, p.232–240, 2007,.

DOI: 10.1016/j.compstruct.2005.07.006

Google Scholar