Effects of Ce Addition on Solidification Structure of a Low-Carbon 42CrMo4 Steel

Article Preview

Abstract:

Effects of Cerium (Ce) addition on solidification structure of a low-carbon 42CrMo4 steel was investigated. The addition of up to 0.067 wt.% of Ce in the steel produced greatly improved solidification structure with a suppressed columnar grain zone, finer grain size in an equiaxed grain zone and zero area fraction of casting shrinkage cavity. The added Ce occurred in the steel both in the form of Ce oxy-sulfide inclusions and as dissolved atomic Ce segregated together with other elements at prior austenite grain boundaries and at interdendritic spacing. The Ce oxy-sulfide inclusions were found to play a major role in the observed improved grain structure meanwhile dissolved Ce had pronounced effects on morphology of dendritic networks. The fraction of Ce dissolved in the melt appeared to bring about increase in fluidity of the molten steel, leading to total elimination of interdendritic shrinkage porosity in solidification structure of the steel with added Ce. Ce addition can be considered as a potential solution for grain structure refinement in heavy-weight castings of 42CrMo4 steel grade.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-13

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.J. Pickering, Macrosegregation in steel ingots, The applicability of modeling and characterization techniques, ISIJ Int. 53/6 (2012) 935-949.

DOI: 10.2355/isijinternational.53.935

Google Scholar

[2] B. Sang, X. Kang, D. Li, A novel technique for reducing macrosegregation in heavy steel ingots, J. Mater. Process. Technol. 210 (2010) 703-711.

DOI: 10.1016/j.jmatprotec.2009.12.010

Google Scholar

[3] N. Hatami, R. Babaei, M. Dadashzadeh, P. Davami, Modelling of hot tearing formation during solidification, J. Mater. Process. Technol. 205 (2008) 506-513.

DOI: 10.1016/j.jmatprotec.2007.11.260

Google Scholar

[4] V. Leroy, R. D'Haeyer, J. Defourny, T. Hoogendoorn, J. P. Birat, H. J. Grabke, W. B. Morrison, N. G. Henderson, R. D. Longbottom, T. Laux, I. Les, Effects of tramp elements in long and flat products, Technical Steel Research, Final Report, European Commission, (1995).

Google Scholar

[5] Y. Nuri, T. Ohashi, T. Hiromoto and O. Kitamura, Solidification macrostructure of ingots and continuously cast slabs treated with rare earth metals, Trans. Iron Steel Inst. Jpn. 22 (1982) 408-416.

DOI: 10.2355/isijinternational1966.22.408

Google Scholar

[6] L. Wang, Q. Lin, J. Ji, D. Lan, New study concerning development of application of rare earth metals in steels, J. Alloys Comp. 408-412 (2006) 384-386.

DOI: 10.1016/j.jallcom.2005.04.090

Google Scholar

[7] L. Wang, Q. Lin, L. Yue, L. Liu, F.Guo, F. Wang, Study of application of rare earth elements in advanced low alloy steels, J. Alloys Comp. 451 (2008) 534-537.

DOI: 10.1016/j.jallcom.2007.04.234

Google Scholar

[8] J. Lan, J. He, W. Ding, Q. Wang, Y. Zhu, Effect of rare earth metals on the microstructure and impact toughness of a cast 0.4C-5Cr-1.2Mo-1.0V steel, ISIJ Int. 40/12 (2000) 1275-1282.

DOI: 10.2355/isijinternational.40.1275

Google Scholar

[9] M. Andersson, J. Janis, L. Holappa, M. Kiviö, P. Naveau, M. Brandt, D. Espinosa, L. Bellavia, X. Vanden Eynde, E. de Courcy, L. Chapuis, T. Iung, S. Ekerot, C. van der Eijk, Grain size control in steel by means of dispersed non-metallic inclusions – GRAINCONT, Final Report EUR24993EN, Directorate-General for Research, European Commission, (2011).

Google Scholar

[10] S. Kunstreich (D. Rotelec), Electromagnetic stirring for continuous casting – Part 1, La Rev. Metall. CIT (April 2003) 395-408.

Google Scholar

[11] N. El-Kaddah, T. T. Natarajan, Electromagnenetic stirring of steel: Effects of stirrer design on mixing in horizontal electromagnetic stirring of steel slabs, Second International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 6-8 December 1999, pp.339-344.

Google Scholar

[12] K-H. Spitzer, M. Dubke, K. Schwerdtfeger, Rotational electromagnetic stirring in continuous castings of round strands, Metall. Trans.B 17B (March 1986) 119-131.

DOI: 10.1007/bf02670825

Google Scholar

[13] J. W. Morris Jr., Ch. Kinney, K. Pytlewski, Y Adachi, Microstructure and cleavage in lath martensitic steels, Sci. Technol. Adv. Mater. 14 (2013) 014208.

DOI: 10.1088/1468-6996/14/1/014208

Google Scholar

[14] Z. Daiping, J. Tao, L. Baicheng, The effects of phase-field parameters on grain growth morphologies in the solidification, Mater. Trans. 44/3 (2003) 367-371.

DOI: 10.2320/matertrans.44.367

Google Scholar

[15] M. Guo, H. Suito, Influence of dissolved cerium and primary inclusion particles of Ce2O3 and CeS on solidification behavior of Fe- 0.20mass% C- 0.02mass% P alloy, ISIJ Int. 39/7 (1999) 722-729.

DOI: 10.2355/isijinternational.39.722

Google Scholar

[16] H. Nagaumi, Prediction of porosity contents and examination of porosity formation in Al-4.4%Mg DC slab, Sci. Technol. Adv. Mater. 2 (2001) 49-57.

DOI: 10.1016/s1468-6996(01)00025-0

Google Scholar

[17] K. D. Li and E. Chang, A mechanism of porosity distribution in A356 aluminum alloy castings, Mater. Trans. 43/7 (2002) 1711-1715.

DOI: 10.2320/matertrans.43.1711

Google Scholar

[18] R. Boom, O. Dankert, A. Van Veen, A. A. Kamperman, Argon solubility in liquid steel, Metall. and Mater. Trans. B 31B (October 2000) 913-919.

DOI: 10.1007/s11663-000-0067-2

Google Scholar

[19] B. A. Dewhirst, Castability control in metal casting via fluidity measures: Applications of error analysis to variations in fluidity testing, Doctoral Thesis, Worcester Polytechnic Institute, December 2008, p.5.

Google Scholar

[20] F. Spengler Arthur Jr., P. Young William, Use of rare earth elements for reducing nozzle deposits in the continuous casting of steel process, US Patent No. US3623862, Nov. 30/1971, USA.

Google Scholar

[21] D. A.Porter, K. E. Easterling, Phase Transformations in Metals and Alloys, CRC Press - Taylor & Francis Group, 2004, Finland, pp.186-196.

Google Scholar