Computational Simulation of a Hot Filament Chemical Vapor Deposition Process for Depositing SRO Films

Article Preview

Abstract:

In the present report, a two dimensional (2D) model was developed to describe the fluid dynamics, heat and mass transfer of a Chemical Vapor Deposition activated by a Hot Filament (HFCVD) reactor, as well as the chemical generation of the precursor species which are present in the growth of non-stoichiometric silicon rich oxide (SRO) films. The SRO is known for have excellent photo luminescent properties which are useful in optoelectronic applications. This material can be obtained by the HFCVD technique which offers important advantages such as the easily to obtain thin films with diverse structural, compositional and optical characteristics. During deposition is a priority to control key parameters as inlet flow, substrate temperature and pressure so it compels to know previous theoretical information about these parameters which can be obtained by computational simulation. Therefore, by means of commercial Computational Fluid Dynamics (CFD) were solved the continuity, momentum and energy equations in steady state. Also, a thermodynamic equilibrium study of the SiO2(s) + H2 (g) reaction was carried out with the Factsage software. The thermodynamic equilibrium results provide the main chemical species which are present during the deposit process of the SRO films. The 2D model was used to simulate the temperature and velocity distribution of the hydrogen in the deposit process. The theoretical calculated temperatures were compared with those obtained experimentally by thermocouple measurements. From the simulation results, the temperature and gas velocity profiles were obtained at different hydrogen flow levels (50, 75, 100 sccm) and temperature source-substrate distances (5, 6 and 7mm) for a 50 sccm level. SEM micrographs and profilometry measurements disclose that the outlet configuration affects substantially both the thickness and surface uniformity of the SRO films. This parameter was modified to obtain a better quality (thickness and uniformity) and a large deposit area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-111

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Han Y. Shimizu, G. Seguini, E. Arduca, C. Castro, G. Benassayag, Y. Nagai, S. Shamm-Chardon, M. Perego., Evolution of shape, size, and areal density of a single plane of Si nanocrystals embedded in SiO2 matrix studied by atom probe tomography, RSC Adv., 6, 5, (2016) 3617–3622.

DOI: 10.1039/c5ra26710b

Google Scholar

[2] J. A. Luna López D. E. Vázquez Valerdi, A. Benítez Lara, G. García Salgado, A. D. Hernández -de la Luz, A. Morales Sánchez, F. J. Flores Gracia and M. A. Dominguez, Optical and Compositional Properties of SiOx Films Deposited by HFCVD: Effect of the Hydrogen Flow, J. Electron. Mater., 46, 4, (2017) 2309–2322.

DOI: 10.1007/s11664-016-5271-1

Google Scholar

[3] V. N. Kruchinin, T. V. Perevalov, G. N. Kamaev, S.V. Rykhlitskii, and V. A. Gritsenko, Optical Properties of Nonstoichiometric Silicon Oxide SiOx (x<2). Opt and Spectrosc., 127, 5 (2019) 836-840.

DOI: 10.1134/s0030400x19110183

Google Scholar

[4] W. L. Zhang, S. Zhang, M. Yang, Z. Liu, and T. P. Chen, Charging effect on conductance of magnetron sputtered Si nanocrystals embedded SiO2 films, Nanosci. Nanotechnol. Lett., 2, 3, (2010) 226–230.

DOI: 10.1166/nnl.2010.1074

Google Scholar

[5] J. Bornacelli, J. A. Reyes Esqueda, L. Rodríguez Fernández, and A. Oliver, Improving passivation process of Si nanocrystals embedded in SiO Using Metal Ion Implantation, J. Nanotechnol, (2013) 1-9.

DOI: 10.1155/2013/736478

Google Scholar

[6] A. Benítez-Lara, G. García-Salgado, D. E. Vázquez-Valerdi, A. Morales-Sánchez, N. D. Espinosa-Torres, and J. A. Luna-López, Silicon rich oxide powders by HWCVD: Its optical and morphological properties, Adv. Powder Technol. 26, 1, (2015) 163–16.

DOI: 10.1016/j.apt.2014.09.005

Google Scholar

[7] L. Schäfer, M. Höfer, R. Kröger, The versatility of hot-filament activated chemical vapor deposition, Thin Solid Films, 515 (2006) 1017-1024.

DOI: 10.1016/j.tsf.2006.07.073

Google Scholar

[8] H. Ma, J. Yang. J. Yang, L. Zhu, W. Huang, G. Yuan, J. Feng, T. Jen and H. Lu, Systematic Study of the SiOx Film with Different Stoichiometry by PLasma-Enhanced Atomic Layer Deposition and Its Application in SiOx/SiO2 Super-Lattice, Nanomater, 9, 55 (2019).

DOI: 10.3390/nano9010055

Google Scholar

[9] K. Choi and J.-W. Kim, "CFD Simulation of Chemical Vapor Deposition of Silicon Carbide in CH3SiCl3-H2 System, Curr. Nanosci., 10, 1, (2014) 135–137.

Google Scholar

[10] C. W. Song, Y. H. Lee, S. Y. Heo, N. M. Hwang, S. Choi, and K. H. Kim, Computer simulation of temperature parameter for diamond formation by using hot-filament chemical vapor deposition, Coatings, 8 (1), (2018) 15.

DOI: 10.3390/coatings8010015

Google Scholar

[11] D. C. Barbosa, H. F. V. Nova, and M. R. Baldan, Numerical simulation of HFCVD process used for diamond growth, Brazilian J. Phys., 36, 2 (2006) 313–316.

DOI: 10.1590/s0103-97332006000300021

Google Scholar

[12] G. Luo, S. P. Vanka, and N. Glumac, Fluid flow and transport processes in a large area atmospheric pressure stagnation flow CVD reactor for deposition of thin films," Int. J. Heat Mass Transf., 47, 23, (2004) 4979–4994.

DOI: 10.1016/j.ijheatmasstransfer.2004.06.012

Google Scholar

[13] H. Ni, S. Lu, and C. Chen, Modeling and simulation of silicon epitaxial growth in SiemensCVD reactor, J. Cryst. Growth, 404, (2014) 89–99.

DOI: 10.1016/j.jcrysgro.2014.07.006

Google Scholar

[14] A. Dollet, Multiscale modeling of CVD film growth-a review of recent works, Surf. Coatings Technol., 177–178, (2004) 245–251.

DOI: 10.1016/j.surfcoat.2003.09.040

Google Scholar

[15] T. Zhang, J. Zhang, B. Shen, and F. Sun, Simulation of temperature and gas density field distribution in diamond films growth on silicon wafer by hot filament CVD, J. Cryst. Growth, 343,1, (2012) 55–61.

DOI: 10.1016/j.jcrysgro.2012.01.005

Google Scholar

[16] K. C. Topka, G. A. Chliavoras, F. Senocq, Hugues Vergnes, D. Samelor, D. Sadowski, C. Vahlas, Brigitte Caussant, Large temperature range model for the atmospheric pressure chemical vapor deposition of silicon dioxide films on the thermosensitive substrates, Chem. Eng. Res.Des, 161 (2020) 146-158.

DOI: 10.1016/j.cherd.2020.07.007

Google Scholar

[17] J. A. Luna López, D. E. Vázquez Valerdi, A. Benítez Lara, G. García Salgado, A. D. Hernández de la Luz, A. Morales Sánchez, F. J. Flores Gracia, and M.A. Dominguez,J. Electron Mater, 46, (2017) 4.

DOI: 10.1007/s11664-016-5271-1

Google Scholar

[18] H. H. El-badrawi, E. S. Hafez, M. Fayad, and A. Shafeek, Transport Phenomena, second edition New York, (2002).

Google Scholar

[19] Martínez Hernández H. P., Luna López J. A., David Hernández de la Luz J. A., Luna Flores A., Monfil Leyva K., García Salgado G., Carrillo López J., Ordoñez Flores R., Pérez García S.A., Hernández Simón Z. J., Mendoza Conde G. O. and Raquel Ramírez Amador, Spectroscopic and Microscopic Correlation of SRO-HFCVD Films on Quartz and Silicon, crystals, 10, 127, (2020).

DOI: 10.3390/cryst10020127

Google Scholar

[20] M. Riera, J. A. Rodríguez, J. Barreto, and C. Domínguez, Modeling of non-stoichiometric silicon oxides obtained by plasma enhanced chemical vapour deposition process, Thin Solid Films, 515, 7–8, (2007) 3380–3386.

DOI: 10.1016/j.tsf.2006.09.032

Google Scholar

[21] J. Abrefah and D. R. Olander, Reaction of Atomic Hydrogen with cristalline silicon, Surf. Sci., 209, (1989) 291–313.

DOI: 10.1016/0039-6028(89)90077-0

Google Scholar

[22] V. Verlaan, Z. S. Houweling, K. van der Werf, H. D Goldbach, and Ruud Schropp, Reaction Mechanism for Deposition of Silicon Nitride by Hot-Wire CVD with Ultra High Deposition Rate (>7 nm/s), Mater. Res. Soc., 910.

DOI: 10.1557/proc-0910-a03-03

Google Scholar