Effect of Ionic Liquid on the Properties of Nanocomposites Based on Epoxy/CNT Hardened with MCDEA

Article Preview

Abstract:

Thermosetting systems based on epoxy resin (RE) with the dispersion of carbon nanotubes (CNT), have been extensively studied by the development of high-performance materials with interesting mechanical, thermal and electrical properties that the thermo-rigid system achieves with the addition of CNT, and thus contribute to obtain composites with excellent performance in low amounts of this filler. However, ensuring a good dispersion of these systems is not easy, as CNTs have a great tendency to cluster due to Van der Waals interactions. To assist in the dispersion of the systems, a phosphonium-based ionic liquid, tributyl (ethyl) -phosphonium diethyl phosphate, acted with a double role, as a dispersion agent and catalyst in systems hardened with MCDEA (4,4’-methylenebis (3 - chloro-2,6-diethylaniline), which is a solid compound giving the systems high viscosity, and with the addition of LI improved the dispersion of the systems, as well as the processability in the preparation of the nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-38

Citation:

Online since:

July 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B.T. Marouf, B., Y.W. Mai, R. Bagheri, R.A. Pearson. Toughening of epoxy nanocomposites: nano and hybrid effects. Journal Polymer Reviews, Vol.56 (2016), pp.70-112.

DOI: 10.1080/15583724.2015.1086368

Google Scholar

[2] Y. Li, X. Huang, L. Zeng, L. Li, H. Tian, X. Fu, Y. Wang, W.H. Zhong. A review ofthe electrical and mechanical properties of carbon nanofiller-reinforced polymercomposites. Journal of Materials Science, Vol.54 (2019), pp.1036-1076.

DOI: 10.1007/s10853-018-3006-9

Google Scholar

[3] R. Zerrouki, K. Abdelkader, Z. Mohamed. Critical analyzes of nanocomposite beam buckling reinforced with non-linear FG-CNT. Advances in nano research, Vol.9 (2020), pp.211-220.

Google Scholar

[4] A. Boulal, T. Bensattalah, A. Karas, M. Zidour, H. Heireche, E.A. Adda Bedia. Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle. Structural Engineering and Mechanics, Vol.73 (2020) 209-223.

Google Scholar

[5] J. Suave, L.A.F Coelho, S.A. Amico, S.H. Pezzin. Effect of sonication on thermomechnical properties of epoxy nanocomposites with carboxylated-SWNT. Materials Science, Vol. 509(2009), pp.57-62.

DOI: 10.1016/j.msea.2009.01.036

Google Scholar

[6] R. Kotsilkova, E. Ivanov, D. Bychanok, A. Paddubskaya, M. Demidenko, J. Macutkevic, S. Maksimenko, P. Kuzhir. Effects of sonochemical modification of carbono nanotubes on the electrical and electromagnetic shielding properties of epoxy composites. Composites Science of Technology, Vol. 106(2015), pp.85-92.

DOI: 10.1016/j.compscitech.2014.11.004

Google Scholar

[7] C.E Pizzutto, J. Suave, J. Bertholdi, S.H. Pezzin, L.A.F. Coelho, S.C. Amico. Study of epoxy/CNT nanocomposites prepared via dispersion in the hardener. Materials Research, Vol. 14(2011), pp.256-263.

DOI: 10.1590/s1516-14392011005000041

Google Scholar

[8] M. Hosur, R. Barua, S. Zainuddin, A. Kumar, J. Trovillion, S. Jeelani. Effect of processing techniques on the performance of epoxy/MWCNT nanocomposites. Joural of Applied Polymer Science, Vol. 127(2013), pp.4211-4224.

DOI: 10.1002/app.37990

Google Scholar

[9] L. Chang, K. Friedrich, L. Ye, P. Toro. Evaluation and visualization of the percolating networks in multi-wall carbon nanotube/epoxy composites, Journal of Materials Science, Vol.44(2009), pp.4003-4012.

DOI: 10.1007/s10853-009-3551-3

Google Scholar

[10] G. Olowojoba, S. Sathyanarayana, B. Caglar, B. Kiss-Pataki, I. Mikonsaari, C. Hübner, P. Elsner. Influence of process parameters on the morphology, rheological and dielectric properties of three-roll-milled multiwalled carbon nanotube/epoxy suspensions. Polymer, Vol.54(2013), pp.188-198.

DOI: 10.1016/j.polymer.2012.11.054

Google Scholar

[11] T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science, Vol.300(2003), p.2072–(2074).

DOI: 10.1126/science.1082289

Google Scholar

[12] S. Zhang, Y. Zhang, J. Zhang, Y. Chen, X. Li, J. Shi, Z. Guo. Dispersion of modified carbon nanotubes in 1-butyl-3-methyl-imidazolium tetrafluoroborate. J Materials Science, Vol.4(2006), pp.3123-3126.

DOI: 10.1007/s10853-006-5229-4

Google Scholar

[13] I. Guryanov, F.M. Toma, A.M. Lopez, M. Carraro, T.D. Ros, G. Angelini, E. D'Aurizio, A. Fontana, M. Maggini, M. Prato, M. Bonchiio. Microwave-assisted functionalization of carbon nanostructures in ionic liquids. Chemistry a European Journal, Vol.15(2009), pp.12837-12845.

DOI: 10.1002/chem.200901408

Google Scholar

[14] Z. Wang, H.A. Colorad, Z.H Guo, H. Kim, C.L. Park, H.T. Hahn, S.G. Lee, K.H. Lee, Y.Q. Shang. Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites. Materials Research, Vol.15(2012), pp.510-516.

DOI: 10.1590/s1516-14392012005000092

Google Scholar

[15] E.C.L. Pereira, B.G. Soares. Conducting epoxy networks modified with non-covalently functionalized multi-walled carbon nanotube with imidazolium-based ionic liquid. Journal of Applied Polymer Science, Vol.133(2016), pp.43976-43985.

DOI: 10.1002/app.43976

Google Scholar

[16] J. Sanes, N. Saurín, F.J. Carrión, G. Ojados, M.D. Bermúdez. Synergy between single-walled carbon nanotubes and ionic liquid in epoxy resin nanocomposites. Composites Part B: Engineering, Vol.105(2016), pp.149-159.

DOI: 10.1016/j.compositesb.2016.08.044

Google Scholar

[17] B.G. Soares, F.F. Alves. Nanostructured epoxy-rubber network modified with MWCNT and ionic liquid: electrical, dynamic-mechanical and adhesion properties. Polymer Composites, Vol.39(2018), p.E2584-E2594.

DOI: 10.1002/pc.24852

Google Scholar

[18] B.G. Soares. Ionic liquid: a smart approach for developing conducting Polymer composites. Journal of Molecular Liquids, Vol.262(2018), pp.8-18.

DOI: 10.1016/j.molliq.2018.04.049

Google Scholar

[19] K. Kowalczyk, T. Spychaj. Ionic liquids as convenient latent of epoxy resins. Polimery, Vol.48(2003), pp.833-835.

DOI: 10.14314/polimery.2003.833

Google Scholar

[20] M.A.M. Rahmathullah, A. Jeyarajasingam, B. Merritt, M.M. Van landingha, S.H. Mcknight,, G.R. Palmese. Room temperature ionic liquids as thermally latent initiators for polymerization of epoxy resins. Macromolecules, Vol.42(2009), pp.3219-3221.

DOI: 10.1021/ma802669k

Google Scholar

[21] B.G. Soares, S. Livi, J. Duchet-rumeau, J-F. Gerard. Synthesis and Characterization of Epoxy/MCDEA Networks Modified WITH Imidazolium-Based Ionics Liquids. Macromolecular Materials and Engineering, Vol.296(2011), pp.826-834.

DOI: 10.1002/mame.201000388

Google Scholar

[22] H. Maka, T. Spychaj, R. Pilawka. Epoxy Resin/Ionic Liquid Systems: The Influence of Imidazolium Cation Size and Anion Type on Reactivity and Thermomechanical Properties. Industrial and Engineering Chemistry, Vol.51(2012), pp.5197-5206.

DOI: 10.1021/ie202321j

Google Scholar

[23] N. Hammed, N.V. Salim, T.L. Hanley, M. Sona, B.L. Fox, Q. Guo. Individual dispersion of carbon nanotubes in epoxy via a novel dispersion-curing approach using ionic liquids. Physical Chemistry Chemical Physics, Vol.15(2013), pp.11696-11703.

DOI: 10.1039/c3cp00064h

Google Scholar

[24] J.A. Throckmorton, A.L. Watters, X. Geng, G.R. Palmese. Room temperature ionic liquids for epoxy nanocomposite synthesis: Direct dispersion and cure. Composites Science and Technology, Vol.86(2013), pp.38-44.

DOI: 10.1016/j.compscitech.2013.06.016

Google Scholar

[25] U. Arnold, C. Altesleben, S. Behrens, S. Essig, L. Lautenschütz, D. Schild, J. Sauer. Ionic liquid-initiated polymerization of epoxides: A useful strategy for the preparation of Pd-doped polyether catalysts. Catalysis Today, Vol.246(2015), pp.116-124.

DOI: 10.1016/j.cattod.2014.08.026

Google Scholar

[26] F.C. BInks, G. Cavalli, M. Henningsen, B.J. Howlin, I. Hamerton,. Examining the effects of storage on the initiation behavior of ionic liquids towards the cure of epoxy resins. React Funct. Polymer, Vol.11(2019), pp.657-675.

DOI: 10.1016/j.reactfunctpolym.2018.09.017

Google Scholar

[27] T.K.L. Nguyen, S. Livi, B.G. Soares, S. Pruvost, J. Duchet-rumeau, J-F Gerard. Ionic liquids: A New Route for the Design of Epoxy Networks. ACS Sustainable Chem Eng, Vol.4(2016), pp.481-490.

DOI: 10.1021/acssuschemeng.5b00953

Google Scholar

[28] B.G. Soares, N. Riany, A.A. Silva, G.M.O. Barra, S. Livi. Dual-role of phosphonium–Based ionic liquid in epoxy/MWCNT systems: Electric, rheological behavior and electromagnetic interference shielding effectiveness. Eur. Polym. J, Vol.84(2016), p.77–88.

DOI: 10.1016/j.eurpolymj.2016.09.016

Google Scholar

[29] T.K.L. Nguyen, S. Livi, B.G. Soares, S. Pruvost, J. Duchet-rumeau. Ionic liquids as reactive additives for the preparation and modification of epoxy networks. Journal of Polymer Science Part A Polymer Chemistry, Vol.52(2014), pp.3463-3471.

DOI: 10.1002/pola.27420

Google Scholar

[30] K. Kowalczyk, T. Spychaj. Ionic liquids as convenient latent hardeners of epoxy resins. Polimery, Vol.48(2003), pp.833-835.

DOI: 10.14314/polimery.2003.833

Google Scholar

[31] SH. Kim, WI Lee. Assessment of dispersion in carbon nanotube reinforced composites using differential scanning calorimetry. Carbon., Vol.47(2009), pp.2699-2703.

DOI: 10.1016/j.carbon.2009.05.026

Google Scholar

[32] F.F. Alves, A.A. Silva, B.G. Soares. Epoxy-MWCNT composites prepared from máster batch and powder dilution: effect of ionic liquid on dispersion and multifunctional properties. Polymer Engineerig Sciences, Vol.58(2018), pp.1689-1697.

DOI: 10.1002/pen.24759

Google Scholar

[33] L.G. Cândido. Líquidos iônicos: efeito da temperatura sobre a condutividade iônica - Uma descrição através da teoria de Arrhenius deformada. 2012. 93 f. Dissertação (Mestrado). Programa de Pós-Graduação em Química, Universidade de Brasília, Brasília, (2012).

DOI: 10.22239/2317-269x.01514

Google Scholar

[34] Q. Lyu, H. Yan, L. Li, Z. Chen, H. Yao, H. Nie. Imidazolium Ionic Liquid Modified Graphene Oxide: As a Reinforcing Filler and Catalyst in Epoxy Resin. Polymers, Vol.9(2017), pp.447-461.

DOI: 10.3390/polym9090447

Google Scholar

[35] B.G. Soares, A.A. Silva, S. Livi, J. Duchet-rumeau, J.F. Gerard. New Epoxy/Jeffamine networks modified with ionic liquids. Journal of Applied Polymer Science, Journal Applied Polymer Science, Vol.131(2014), pp.39834-39839.

DOI: 10.1002/app.39834

Google Scholar