Engineered Nanoparticles for Prevention against CoVID-19 Infection

Article Preview

Abstract:

The sudden emergence of novel coronavirus CoVID-19 in China during the end of last year and its outburst all around the globe thereafter have raised serious questions about their instant management and diagnostic measures as it is infecting humans around in an exponential manner. The implementation of nanotechnology could perhaps ingenerate the rising distress due to the spread of the disease as the conventional antiviral drugs just control the symptoms. Nanoparticles drug delivery systems are engineered technologies that use nanoparticles for targeted drug delivery and controlled release of therapeutic agents. Nanoparticles based approach can replace the treatment with a more promising one that could meet these challenges. Understanding molecular pathogenesis of CoVID-19 infection is very important to exploit the nanoparticles to fight against it. A lot of nanostructures have been developed with antiviral and antibacterial properties for a variety of drug delivery and biomedical applications. The need of the hour is to exploit nano research to develop effective diagnostics tools, drugs, vaccines to treat and prohibit infection. In this paper an attempt has been made to understand the role and potential of various nanoparticles to inhibit CoVID-19 infection and its toxicity effects.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-55

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. K. Pervez and S. Parveen, Evolution and emergence of pathogenic viruses: Past, present and future,, Intervirology, 60 (2017) 1-7.

DOI: 10.1159/000478729

Google Scholar

[2] I. V. Babkin and I. N. Babkina, The origin of the variola virus,, Viruses, 7 (2015) 1100-12.

DOI: 10.3390/v7031100

Google Scholar

[3] N. H. De Jesus, Epidemics to eradication: the modern history of poliomyelitis,, Virology Journal, 4 (2007) 320-24.

Google Scholar

[4] K. Subbarao, Advances in influenza virus research: A personal perspective,, Viruses 10 (12) (2018) 724.

DOI: 10.3390/v10120724

Google Scholar

[5] E. Chlongitas and G. Ilonidis, Transmission of variecella-zoster virus originating from a patient with localized herpes zoster: Implications for infection control,, American J. Infection Controll., 38 (8) (2010) 669-670.

DOI: 10.1016/j.ajic.2010.02.010

Google Scholar

[6] Y. L. Lau and J. S. M. Peiris, Pathogenesis of severe acute respiratory syndrome,, Curr. Opin. Immunol., 17 (2005) 404-410.

Google Scholar

[7] T. A. Schawertz and A. S. Fauci, The extended impact of human immunodeficiency virus/AIDS Research,, J. Infect. Diseases, 219 (1) (2019) 6-9.

Google Scholar

[8] S. L. Chen and T. R. Morgan, The natural history of hepatitis C virus (HCV) infection,, Int. J. Med. Sci. 3(2) (2006) 47-52.

Google Scholar

[9] L. R. Stanberry, A. L. Cunningham, A. Mindal. L. L. Scott, S. L. Sparuance, F. Y. Aoki and C. L. Lacey, Prospects of control of herpes simplex virus disease through immunization,, Clinical Infectious diseases, 30 (3) (2000) 549-566.

DOI: 10.1086/313687

Google Scholar

[10] A. H. Ropper, Acute Viral Encephalitis, N. Engl. J. Med., 379 (2018) 557-566.

Google Scholar

[11] H. Mohd, J. Al-Tawfiq, Z. Memish, Middle east respiratory syndrome coronavirus (MERS-CoV): Origin and animal reservoir,, J. Virol. 13 (2016) 87-90.

DOI: 10.1186/s12985-016-0544-0

Google Scholar

[12] A. H. Toosy, S. O'sullivan, An overview of middle east respiratory syndrome in the middle east", "Fowler Zoo and Wild Animal Medicine Current Therapy,, Volume 9 (2019) 287-291.

DOI: 10.1016/b978-0-323-55228-8.00042-4

Google Scholar

[13] N. Satija and S. K. Lal, The Molecular biology of SARS coronavirus, Ann. N. Y. Acad. Sci. 1102 (2007) 26-38.

Google Scholar

[14] T. M. Colpitts, M. J. Conway, R. R. Montgomery and E. Fikrig, West nile virus: Biology, transmission and human infection,, Clinical Microbiology reviews, 25 (4) (2012) 635-648.

DOI: 10.1128/cmr.00045-12

Google Scholar

[15] A. M. McCollum and I. K. Damon, Human monkeypox,, Clinical Infectious Diseases, 58 (2), (2014) 260-267.

DOI: 10.1093/cid/cit703

Google Scholar

[16] C. McCaughey and C. A. Hart, Hantaviruses,, J. Med. Microbiol, 49 (2000) 587-599.

Google Scholar

[17] S. P. Luby, The pandemic potential of Nipah virus,, Antiviral Research, 100 (2013) 38-43.

DOI: 10.1016/j.antiviral.2013.07.011

Google Scholar

[18] H. Field, P. Young, J. M. Yob, J. Mills, L. Hall and J. Mackenzie, The natural history of Hendra and Nipah viruses,, Microbes and Infection, 3 (2001) 307-14.

DOI: 10.1016/s1286-4579(01)01384-3

Google Scholar

[19] O. Schwartz and M. L. Albert, Biology and pathogenesis of Chikungunya virus,, Nature Reviews Microbiology 8(7) (2010) 491-500.

DOI: 10.1038/nrmicro2368

Google Scholar

[20] W. Y. Khot and M. Y. Nadkar, The 2019 novel coronavirus outbreak-A global threat,, J. of the Association of Physicians of India, 68 (2020) 67-72.

Google Scholar

[21] D. K. Chu, Y. Pan, S. M. S. Cheng, K.P. Y. Hui, P. Krshnan, Y. Liu, D. Y. M. Ng, C. K. C. Wan, P. Yang, Q. Wang, M. Peiris and L. L. M. Poon, Molecular diagnosis of a novel coronavirus (2019-nCOV) causing an outbreak on pneumonia, Clinical Chemistry, 66 (4), (2020) 549-555.

DOI: 10.1093/clinchem/hvaa029

Google Scholar

[22] H. Yang, M. Bartlam and Z. Rao, Drug design targeting the main protease, the Achilles' heel of coronaviruses,, Current Pharmaceutical Des. 12 (2006) 4573-90.

DOI: 10.2174/138161206779010369

Google Scholar

[23] S. Belouzard, J. K. Millet, B. N. Licitra and G. R. Whittaker. Mechanisms of coronavirus cell entry mediated by the viral spike protein,. Viruses, 4 (6) (2012) 1011-33.

DOI: 10.3390/v4061011

Google Scholar

[24] X. Li, M. Geng, Y. Peng, L. Meng, S. Lu, Molecular immune pathogenesis and diagnosis in CoViD-19,, J. Pharm. Anal., 10 (2020) 102-108.

Google Scholar

[25] M. A. Shereen and R. Siddique, CoVID-19 infection: Origin, transmission and characteristics of human coronavirus,, J. Adv. Res. 24 (2020) 91-98.

Google Scholar

[26] A. W. H. Chin, J. T. S. Chu, M. R. A. Perera, K. P. Y. Hui, H. L. Yen, M. C. W. Chen, M. Peiris and L. L. M. Poon, Stability of SARS-CoV-2 in different environmental conditions,, The Lancet, 1(1) (2020) E10.

DOI: 10.1016/s2666-5247(20)30003-3

Google Scholar

[27] B. Khodashenas and H. R. Ghorbani, Synthesis of silver nanoparticles with different shapes,, Arabian J. Chem. 12 (8) (2019) 1823-38.

DOI: 10.1016/j.arabjc.2014.12.014

Google Scholar

[28] R. G. Kerry and S. Majhi, "Nano-based approach to combat emerging viral (NIPAH virus) infection, Nanotechnol., Biology and Medicine, 18 (2019) 196-220.

DOI: 10.1016/j.nano.2019.03.004

Google Scholar

[29] M. C. Sportelli, M. Izzi, E. A. Kukushkina, S. I. Hossain, R. A. Picca, N. Ditaranto and N. Cioffi, Can Nanotechnology and materials science help to fight against SARS-CoV-2?,, Nanomaterials, 10 (2020) 802-15.

DOI: 10.3390/nano10040802

Google Scholar

[30] M. Vincent, R. E. Duval, P. Hartemann and M. Engels-Deutsch, Contact killing and antimicrobial properties of copper,, J. Appl. Microbiology, 124 (5) (2017) 1032-46.

DOI: 10.1111/jam.13681

Google Scholar

[31] J. K. Patra and K. H. Baek, Antibacterial activity and synergistic antiviral potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria alongwith its anticandidal and antioxidant effects,, Front. Microbiol. (2017) https://doi.org/10.3389/fmicb.2017.00167.

DOI: 10.3389/fmicb.2017.00167

Google Scholar

[32] B. L. Ouay and F. Stellacci, Antibacterial activity of silver nanoparticles: A surface science insight, Nanotoday, 10 (3) (2015) 339-354.

DOI: 10.1016/j.nantod.2015.04.002

Google Scholar

[33] L. Wang, C. Hu and L. Shao, The antimicrobial activity of nanoparticles: Present situation and prospects for the future,, I. J. Nanomedicine, 12 (2017) 1227-1249.

DOI: 10.2147/ijn.s121956

Google Scholar

[34] O Zachar, Formulation of COVID-19 treatment via silver nanoparticles inhalation delivery,, www.scienceopen.com, 28 March (2020).

Google Scholar

[35] S. Pal, Y. K. Tak, and J. M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,, Appl. Environ. Microbiol., 73 (2007) 1712–1720.

DOI: 10.1128/aem.02218-06

Google Scholar

[36] I. Sondi and B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,, J. Colloid Interface Sci., 275 (2004) 177–182.

DOI: 10.1016/j.jcis.2004.02.012

Google Scholar

[37] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, The bactericidal effect of silver nanoparticles,, Nanotechnology, 16 (2005) 2346–2353.

DOI: 10.1088/0957-4484/16/10/059

Google Scholar

[38] M. Gajbhiye, J. Kesharwani, A. Ingle, A. Gade and M. Rai, Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole, Nanomedicine, 5 (2009) 382–386.

DOI: 10.1016/j.nano.2009.06.005

Google Scholar

[39] S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr and A. D. Russell, Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions,, Lett. Appl. Microbiol. 25 (1997) 279–283.

DOI: 10.1046/j.1472-765x.1997.00219.x

Google Scholar

[40] M. Marini, N. De Niederhausern, R. Iseppi, M. Bondi, C. Sabia and M. Toselli, Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol–gel processes,, Biomacromolecules 8 (2007) 1246–1254.

DOI: 10.1021/bm060721b

Google Scholar

[41] J. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara and M. Yacaman, Interaction of silver nanoparticles with HIV-1,, J. Nanobiotechnology, 3, (2005) 6.

DOI: 10.1186/1477-3155-3-6

Google Scholar

[42] J. C. Trefry and D. P. Wooley, Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay, J. Virol. Methods, 183 (2012) 19–24.

DOI: 10.1016/j.jviromet.2012.03.014

Google Scholar

[43] L. Lu, R. W. Sun, R. Chen, C. K. Hui, C. M. Ho, J. M. Luk, G. K. Lau and C. M. Che, Silver nanoparticles inhibit hepatitis B virus replication, Antivir. Ther. 13 (2008) 253–262.

DOI: 10.1177/135965350801300210

Google Scholar

[44] D. Baram-Pinto, S. Shukla, N. Perkas, A. Gedanken and R. Sarid, Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate,, Bioconjugate Chem. 20 (2009) 1497–1502.

DOI: 10.1021/bc900215b

Google Scholar

[45] L. Sun, A. K. Singh, K. Vig, S. R. Pillai and S. R. Singh, Silver nanoparticles inhibit replication of respiratory syncytial virus,, J. Biomed. Nanotechnol., 4 (2008) 149–158.

DOI: 10.1166/jbn.2008.012

Google Scholar

[46] J. V. Rogers, C. V. Parkinson, Y. W. Choi, J. L. Speshock and S. M. Hussain, A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation,, Nanoscale Res. Lett., 3 (2008) 129–133.

DOI: 10.1007/s11671-008-9128-2

Google Scholar

[47] J. L. Speshock, R. C. Murdock, L. K. Braydich-Stolle, A. M. Schrand and S. M. Hussain, Interaction of silver nanoparticles with Tacaribe virus,, J. Nanobiotechnology, 8 (2010) 19.

DOI: 10.1186/1477-3155-8-19

Google Scholar

[48] P. Mehrbod, N. Motamed, M. Tabatabaian, E. R. Soleimani, E. Amini, M. Shahidi and M. T. Kheiri, In vitro antiviral effect of "nanosilver" on influenza virus, J. Pharm. Sci., 17 (2009) 88–93.

Google Scholar

[49] D. X. Xiang, Q. Chen, L. Pang and C. L. Zheng, Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro, J. Virol. Methods, 178 (2011) 137–142.

DOI: 10.1016/j.jviromet.2011.09.003

Google Scholar

[50] A. Kumar, P. K. Vemual and G. John, Silver-nanoparticle-embedded antimicrobial pain based on vegetable oil,, Nature materials, 7 (2008) 236-241.

DOI: 10.1038/nmat2099

Google Scholar

[51] S. Arora, J. Jain, J. M. Rajwade and K. M. Paknikar, Cellular responses induced by silver nanoparticles: In vitro studies, Toxicol Lett. 179 (2008) 93-100.

DOI: 10.1016/j.toxlet.2008.04.009

Google Scholar

[52] L. Dykman and N. Khlebtsov, Gold nanoparticles in biomedical applications: Recent advances and perspectives,, Chem. Soc. Rev. 41 (2012) 2256-82.

DOI: 10.1039/c1cs15166e

Google Scholar

[53] L. A. Dykman and N. G. Khlebtsov, Immunological properties of gold nanoparticles,, Chem. Sci. 8 (2017) 1719-1735.

DOI: 10.1039/c6sc03631g

Google Scholar

[54] M. A. K. Abdelhalim, M. Ghannam, M. M. Mady, Physical properties of different gold nanoparticles: UV-visible fluorescence measurements,, J. Nanomed. & Nanotechol. 3 (3) (2012),.

Google Scholar

[55] S. Jain, D. G. Hirst and J. M. O'Sullivan, Gold nanoparticles a novel agents for cancer therapy,, British J. Radiology, 85 (1010) (2012) 101-113.

DOI: 10.1259/bjr/59448833

Google Scholar

[56] V. Amendola, R. Pilot, M. Frasconi, O. M. Marago and M. Antonia Lati, Surface Plasmon Resonance in gold nanoparticles: A review,, J. Phys. Condens. Matter, 29 (10) (2017).

DOI: 10.1088/1361-648x/aa60f3

Google Scholar

[57] S. Karime, A. Moshalli and M. Nikkalah, Surface plasmon resonance in small gold nanoparticles: Introducing a size-dependent plasma frequency for nanoparticles in quantum regime,, Plasmonics, 14 (2019) 851-860.

DOI: 10.1007/s11468-018-0866-4

Google Scholar

[58] J. C. Y. Kah, K. W. Kho, C. G. L. Lee, C. James, R. Sheppard, Z. X. Shen, K. C. Soo and M. C. Olivo, Early diagnosis of oral cancer based on the surface plasmon resonance of gold nanoparticles,, Int. J. Nanomedicine, 2(4) (2007) 785-98.

Google Scholar

[59] A. Wozniak, Anna Mlankowska and S. Jurga, Size and shape dependent cytotoxity profile of gold nanoparticles for biomedical applications,, J. Materials Science: Materials in medicine, 28 (2017), 850-56.

Google Scholar

[60] X. Xie, J. Liao, Q. Li and Y. Lin, The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods and triangle,, Scientific report, 7 (2017).

DOI: 10.1038/s41598-017-04229-z

Google Scholar

[61] J. Jeong, E. Choi. E. Ellis and T. C. Lee, Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi-functionality,, J. Materials Chem. B, 22 (2019).

DOI: 10.1039/c9tb00557a

Google Scholar

[62] L. Wang, W. Ma, L. Xu, W. Chen, Y. Zhu, C. Xu and N. A. Kotov, Nanoparticle-based environmental sensors, Mater. Sci. Eng. Res. R70 (2010), 265 – 274.

Google Scholar

[63] S. Yi, L. Sun, S. C. Lenaghan, Y. Wang, X. Chong, Z. Zhang and M. Zhang, "One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties, RSC Advances 3 (2013), 10139.

DOI: 10.1039/c3ra40716k

Google Scholar

[64] C. L. Nehl, H. Liao and J. H. Hafner, Optical properties of star-shaped gold nanoparticles,, Nano Lett. 6 (2006), 683-88.

DOI: 10.1021/nl052409y

Google Scholar

[65] Y. Ji, M. Ren, Y. Li, Z. Huang, M. Shu, H. Yang, Y. Xiong and Y. Xu, Detection of aflatoxin B1 with immunochomatographic test strips: Enhanced signal sensitivity using gold nanoflowers,, Talanta 142 (2015) 206-212.

DOI: 10.1016/j.talanta.2015.04.048

Google Scholar

[66] D. O'Neal, L. R. Hirsch, N. J. Halas, J. D. Payne and J. L. West, Photothermal tumor ablation in mice using near infrared absorbing nanoparticles,, Cancer Lett. 209 (2) (2004) 171-176.

DOI: 10.1016/j.canlet.2004.02.004

Google Scholar

[67] Z. K. Alghrair, D. G. Fenig and B. Ebrahimi, Enhanced inhibition of influenza virus infection by peptide-noble-metal nanoparticles conjugates,, Beilstein J. Nanotechnol., 10 (2019) 1038-47.

DOI: 10.3762/bjnano.10.104

Google Scholar

[68] A. M. Paul, Y. Shi, D. Acharya, J. R. Douglas, A. Cooleye, J. F. Anderson, F. Huang and F. Bai, Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro,, J. of General Virology, 95 (8) (2014) 1712-22.

DOI: 10.1099/vir.0.066084-0

Google Scholar

[69] ScienceDaily, 18 April 2017, Using nanoparticles to detect deadly viruses,, www.sciencedaily.com/releases/2017/170418115534.htm.

Google Scholar

[70] A. K. Khan, R. Rashid, G. Murtaza and A. Zahra, Gold nanoparticles: synthesis and applications in drug delivery,, Tropical J. Pharmaceutical Res., 13 (7) (2014) 1169-77.

DOI: 10.4314/tjpr.v13i7.23

Google Scholar

[71] G. M. Ziarani, M. Malmir, N. Lashgari and A. Badiei, The role of magnetic nanoparticles in drug delivery,, RSC Advances, 43 (2019) 25094-106.

DOI: 10.1039/c9ra01589b

Google Scholar

[72] C. Rumenapp and B. Gleich, Magnetic nanoparticles in magnetic resonance imaging and diagnostics,, Pharmaceutical Res., 29 (5) (2012) 1165-79.

DOI: 10.1007/s11095-012-0711-y

Google Scholar

[73] H. Fatima and K. Kim, Magnetic particles for bioseperation,, K. J. Chem. Engin., 34 (3) (2017) 589-599.

Google Scholar

[74] C. A. Hermann, C. Hofmann, A. Duuerkop and A. J. Baeumner, Magnetosomes for bioassays by merging fluorescent liposomes and magnetic nanoparticles: encapsulation and bilayer insertion strategies,, Analytical and Bioanalytical Chemistry, (2020) doi.org/10.1007/s00216-020-02503-0.

DOI: 10.1007/s00216-020-02503-0

Google Scholar

[75] M. N. Zharkov, M. V. Gerasimov, D. B. Trushina, D. N. Khmelenin, E. V. Gromova, D. E. Yakobson and M. A. Pyataev, Two types of magnetite-containing liposomes for magnetic controlled drug release,, J. Phys.: Conference series, 1389 (2019).

DOI: 10.1088/1742-6596/1389/1/012070

Google Scholar

[76] S. D. Anderson, V. V. Gwenin and C. D. Gwenin, Magnetic functionalized nanoparticles for biomedical, drug delivery and imaging applications,, Nanoscale Res. Lett. 14 (2019), doi.org/10.1186/s11671-019-3019-6.

DOI: 10.1186/s11671-019-3019-6

Google Scholar

[77] M. Yallapu, S. Foy, T. K. Jain and V. Labhasetwar, PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications,, Pharma. Res. 27 (11) (2010) 2283-95.

DOI: 10.1007/s11095-010-0260-1

Google Scholar

[78] N. Jhu, H. Ji, P. Yu, J. Niu, M. U. Farooq, M. W. Akram, I. O. Udego, H. Li and X. Niu, Surface modifications of magnetic iron oxide nanoparticles,, Nanomaterials 8 (2018) 810-837.

DOI: 10.3390/nano8100810

Google Scholar

[79] M. T. Muneer, M. A. A. Shah and S. Umar, "Potential of magnetic nanoparticles for Hepatitis B virus detection, J. Nanoscin. & Nanotechnol. 16 (2016) 12112-123.

Google Scholar

[80] N. Panwar, A. M. Soehartono, K. K. Chan, S. Zeng, G. Xu, P. Coquet, K. T. Yong and X. Chen, Nanocarbons for biology and medicine: Sensing, imaging and drug delivery,, Chem. Rev. 119 (2019) 9559-9656.

DOI: 10.1021/acs.chemrev.9b00099

Google Scholar

[81] E. Bekayarova, Y. Ni, E. B. Malarkey, V. Montana, J. C. McWillams, R. C. Haddon and V. Parpura, Applications of carbon nanotubes in biotechnology and biomedicines,, J. Biomed. Nanotechnol. 1(1) (2005) 3-17.

Google Scholar

[82] W. Zhang, Z. Zhang and Y. Zhang, The application of carbon nanotubes in target drug delivery system for cancer therapies,, Nanoscale Research Lett. 6 (2011) 555-577.

DOI: 10.1186/1556-276x-6-555

Google Scholar

[83] B. Esmaeil, N. S. Masoumeh, H. K. Saeed, Y. Meysam, B. Armin, K. Erfan, S. Monajemi aand K. Mahshad, Carbon nanostructures: The current potential applications in tissue Engineering,, J. Tissue Eng. (2019) 21-41.

Google Scholar

[84] L. Tang, Y. Wang, Y. Liu and J. Li, DNA-directed self assembly of graphene oxide with applications to ultrasensitive oligonucleotide assay,, ACS Nano 5 (5) (2011) 3817-22.

DOI: 10.1021/nn200147n

Google Scholar

[85] J. Ping, R. Visnubhotla, A. Vrudhula and A. T. Charlie Johnson, Scalable production of high sensitivity, level free DNA biosensors based on back gated field effect transistors,, ACS Nano, 10 (2016) 8700-04.

DOI: 10.1021/acsnano.6b04110

Google Scholar

[86] P. Innocenzi and L. Stagi, Carbon-based antiviral nanomaterials: graphene, C-dots and fullerenes. A perspective,, Chemical Science 11 (2020) 6606-22.

DOI: 10.1039/d0sc02658a

Google Scholar

[87] P. I. Anderson, A. Ianevski, H. Lysvand, A. Vitkauskiene, V. Oksenych, M. Bjoras, K. Telling, I. Lutsar, U. Dumpis, Y. Irie, T. Tenson, A. Kantele and D. E. Kainov, Discovery and development of safe-in-man broad-spectrum antiviral agents,, I. J. Infectious Diseases, 93 (2020) 268-276.

DOI: 10.20944/preprints201910.0144.v4

Google Scholar

[88] T. Du, J. Liang, N. Dong, J. Lu, Y. Fu, L. Fang, S. Xiao and H. Han, Glutathione-capped Ag2S nanoclusters inhibit coronavirus proliferation through blockage of viral RNA synthesis and budding,, ACS Appl. Mater. Interfaces 10 (2018) 4369-78.

DOI: 10.1021/acsami.7b13811

Google Scholar

[89] Y. N. Chen, Y. H. Hsueh, C. T. Hseih, D. Y. Tzou and P. L. Chang, Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses,, Int. J. Environ. Res. Public Health 13 (4) (2016) 430-36.

DOI: 10.3390/ijerph13040430

Google Scholar

[90] L. A. Laygah and S. Eissa, An electrochemical immunosensor for corona virus associated with the middle east respiratory syndrome using an array of gold nanoparticles-modified carbon electrodes,, Microchimca Acta, 186 (2019), doi.org/10.1007/s00604-019-3345-5.

DOI: 10.1007/s00604-019-3345-5

Google Scholar

[91] S. Kang, W. Peng, Y. Zhu, S. Lu, M. Xhou, W. Lin, W. Wu, S. Huang, L. Jiang, X. Luo and M. Deng, Recent progress in understanding 2019 novel coronavirus (SARS-CoV-2) associated with human respiratory disease: detention, mechanisms and treatment,, Int. J. Antimicrobial Agents, 55 (2020) 105950.

DOI: 10.1016/j.ijantimicag.2020.105950

Google Scholar

[92] M. S. Draz and H. Shafiee, Applications of gold nanoparticles in virus detection,, Theranostics 8 (2018) 1985-2017.

DOI: 10.7150/thno.23856

Google Scholar

[93] J. Kang, A. Tahir, H. Wang and J. Chang, Applications of nanotechnology in virus detection, tracking and infection mechanisms,, WIREs Nanomed Nanobiotechnol. (2021) e1700.

DOI: 10.1002/wnan.1700

Google Scholar

[94] Z. Li, Y. Yi, X. Luo, N. Xiong, Y. Liu, S. Li, R. Sun, Y. Wang, B. Hu, W. Chen, Y. Zhang, J. Wang, B. Huang, Y. Lin, J. Yang, W. Cai, X. Wang, J. Cheng, Z. Chen, K. sun, W. Pan, Z. Zhan, L. Chen and F. Ye, Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnostics,, J. Medical Virology, 92 (2020) 1518-24.

DOI: 10.1002/jmv.25727

Google Scholar

[95] B. Alhalaili, I. N. Popescu, O. Kamoun, F. Alzubi, S. Alawadhia and R. Vidu, Nanobiosensors for the detection of novel coronavirus 2019-nCoV and other pandemic/Epidemic respiratory viruses: a review,, Sensors 20 (2020) 6951.

DOI: 10.3390/s20226591

Google Scholar

[96] M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson and R. M. Lambert, Selective oxidation with dioxygen by gold nanoparticles derived from 55-atom clusters,, Nature, (2008) 981-985;.

DOI: 10.1038/nature07194

Google Scholar

[97] A. M. Alkilany and C. J. Murphy, Toxicity and cellular uptake of gold nanoparticles: what we have learned so for,, J. Nanopart. Res. 12 (7) (2010) 2313-33.

DOI: 10.1007/s11051-010-9911-8

Google Scholar

[98] L. Mohammed, D. Ragab and H. Gomaa, Bioactivity of hybrid polymeric magnetic particles and their applications in drug delivery,, Current Pharm. Des., 22 (22) (2016) 3332-52.

DOI: 10.2174/1381612822666160208143237

Google Scholar

[99] R. V. Ghartavol, A. A. M. Borojeni, Z. V. Ghatavoi, H. T. Aiyelabegan and M. R. Jaafari, Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues,, Artificial cells, Nanomedicine and biotechnology, 48 (2020).

DOI: 10.1080/21691401.2019.1709855

Google Scholar

[100] J. Muller, F. Huaux, N. Moreau, P. Misson, J. F. Heilier, M. Delos, M. Arras, A. Fonseca, J. B. Nagy and D. Lison, Respiratory toxicity of multiwall carbon nanotubes,, Toxicology and Appl. Pharmacology, 207 (2005) 221-231.

DOI: 10.1016/j.taap.2005.01.008

Google Scholar

[101] S. Kumar and S. H. Parekh, Linking graphene-based material physicochemical properties with molecular adsorption, structure and cell fate,, Communications Chemistry, 3 (2020).

DOI: 10.1038/s42004-019-0254-9

Google Scholar

[102] Y. Chong, C. Ge, Z. Yang, J. A. Garate, Z. Gu, J. K. Weber, J. Liu and R. Zhou, Reduced cytotoxicity of graphene nanosheets mediated by blood protein coating,, ACS Nano, 9 (6), (2015) 5713-24.

DOI: 10.1021/nn5066606

Google Scholar