[1]
T. Ishida, Formation of stainless steel layer on mild steel by welding arc cladding, Journal of materials science, 26(23) (1991) 6431-6435.
DOI: 10.1007/bf02387825
Google Scholar
[2]
M. Eroğlu and N. Özdemir, Tungsten-inert gas surface alloying of low carbon steel, Surface and Coatings Technology, 154.2-3 (2002) 209-217.
DOI: 10.1016/s0257-8972(01)01712-1
Google Scholar
[3]
F.T. Cheng, K.A. Lo and H.C. Man, NiTi cladding on stainless steel by TIG surfacing process: Part I, Cavitation erosion behavior. Surface and Coatings Technology, 172.2-3 (2003) 308-315.
DOI: 10.1016/s0257-8972(03)00345-1
Google Scholar
[4]
Y.C. Lin and S.W. Wang, Wear behavior of ceramic powder cladding on an S50C steel surface, Tribology International, 36.1 (2003) 1-9.
DOI: 10.1016/s0301-679x(02)00094-4
Google Scholar
[5]
Y.C. Lin and S.W. Wang, Microstructure of TiC–W cladding on steel in nanoscale, Wear, 256.7-8 (2004) 720-725.
DOI: 10.1016/s0043-1648(03)00465-4
Google Scholar
[6]
S. Buytoz, M.M. Yildirim and H. Eren, Microstructural and microhardness characteristics of gas tungsten are synthesized Fe–Cr–C coating on AISI 4340, Materials Letters, 59.6 (2005) 607-614.
DOI: 10.1016/j.matlet.2004.08.038
Google Scholar
[7]
S. Buytoz and M. Ulutan, In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying, Surface and Coatings Technology, 200.12-13 (2006) 3698-3704.
DOI: 10.1016/j.surfcoat.2005.02.178
Google Scholar
[8]
X.H. Wang, M. Zhang, Z.D. Zou, S.L. Song, F. Han and S.Y. Qu, In situ production of Fe–TiC surface composite coatings by tungsten-inert gas heat source, Surface and Coatings Technology, 200.20-21 (2006) 6117-6122.
DOI: 10.1016/j.surfcoat.2005.09.021
Google Scholar
[9]
J.H. Chen, P.H. Hua, P.N. Chen, C.M. Chang, M.C. Chen and W. Wu, Characteristics of multi-element alloy cladding produced by TIG process, Materials letters, 62.16 (2008) 2490-2492.
DOI: 10.1016/j.matlet.2007.12.038
Google Scholar
[10]
S.X. Lv, Z.W. Xu, H.T. Wang and S.Q. Yang, Investigation on TIG cladding of copper alloy on steel plate, Science and Technology of Welding and Joining, 13.1 (2008) 10-16.
DOI: 10.1179/174329307x249414
Google Scholar
[11]
J.H. Chen, P.N. Chen, P.H. Hua, M.. Chen, Y.Y. Chang and W. Wu, Deposition of multicomponent alloys on low-carbon steel using gas tungsten arc welding (GTAW) cladding process, Materials transactions, 50.3 (2009) 689-694.
DOI: 10.2320/matertrans.mrp2008276
Google Scholar
[12]
M.H. Korkut and M.S. Gök, Abrasive wear characteristics of coating area of low carbon steel surface alloyed through tungsten inert gas welding process, Surface Engineering, 25.7 (2009) 517-525.
DOI: 10.1179/026708408x356821
Google Scholar
[13]
C.M. Lin, C.M. Chang, J.H. Chen, C.C. Hsieh and W. Wu, Microstructure and wear characteristics of high-carbon Cr-based alloy claddings formed by gas tungsten arc welding (GTAW), Surface and Coatings Tech, 205.7 (2010) 2590-2596.
DOI: 10.1016/j.surfcoat.2010.10.004
Google Scholar
[14]
M. Ulutan, M.M. Yildirim, S. Buytoz and O.N. Celik, Microstructure and wear behavior of tig surface-alloyed AISI 4140 steel, Tribology Transactions, 54.1 (2010) 67-79.
DOI: 10.1080/10402004.2010.519859
Google Scholar
[15]
S. Dyuti, S. Mridha and S.K. Shaha, Surface modification of mild steel using tungsten inert gas torch surface cladding, American Journal of Applied Sciences, 7.6 (2010) 815.
DOI: 10.3844/ajassp.2010.815.822
Google Scholar
[16]
Y.C. Lin and Y.C. Lin, Elucidation of microstructure and wear behaviors of Ti–6Al–4V cladding using tungsten boride powder by the GTAW method, Journal of coatings technology and research, 8.2 (2011) 247-253.
DOI: 10.1007/s11998-010-9281-2
Google Scholar
[17]
X.D. Du, Y.F. Wang, K. Wang and D.R. Xu, Microstructure and wear behaviour of WC-steel composite cladding, Materials Technology, 26.2 (2011) 90-95.
DOI: 10.1179/175355510x12856832934340
Google Scholar
[18]
Y.C. Lin and Y.C. Lin, Microstructure and tribological performance of Ti–6Al–4V cladding with SiC powder, Surface and Coatings Technology, 205.23-24 (2011) 5400-5405.
DOI: 10.1016/j.surfcoat.2011.06.001
Google Scholar
[19]
F. Bodaghi and M. Moshrefifar, Surface modification of low carbon steel substrate by Al-rich clad layer applied by GTAW, Surface and Coatings Technology, 206.2-3 (2011) 217-223.
DOI: 10.1016/j.surfcoat.2011.06.056
Google Scholar
[20]
O.N. Çelik, M. Ulutan, H. Gaşan, U. Er and S. Buytoz, Effects of graphite content on the microstructure and wear properties of an AISI 8620 steel surface modified by tungsten inert gas, Surface and Coatings Tech, 206.6 (2011) 1423-1429.
DOI: 10.1016/j.surfcoat.2011.09.009
Google Scholar
[21]
Y.C. Lin, Y.C. Lin and Y.C. Chen, Evolution of the microstructure and tribological performance of Ti–6Al–4V cladding with TiN powder, Materials & Design, 36.2-12 (2015) 584-589.
DOI: 10.1016/j.matdes.2011.12.007
Google Scholar
[22]
F. Madadi, F. Ashrafizadeh and M. Shamanian, Optimization of pulsed TIG cladding process of stellite alloy on carbon steel using RSM, Journal of Alloys and Compounds, 510.1 (2012) 71-77.
DOI: 10.1016/j.jallcom.2011.08.073
Google Scholar
[23]
D.X. Peng, The effects of welding parameters on wear performance of clad layer with TiC ceramic, Industrial lubrication and tribology, (2012).
DOI: 10.1108/00368791211249692
Google Scholar
[24]
M.A. Maleque, K.A. Bello, A.N. Md Idriss and S. Mirdha, Processing of TiC-CNT hybrid composite coating on low alloy steel using TIG torch technique, Applied Mechanics and Materials, 378 (2013) 259-264.
DOI: 10.4028/www.scientific.net/amm.378.259
Google Scholar
[25]
C.C. Hsieh, Y.C. Liu, J.S. Wang and W. Wu, Microstructural evolution with various Ti contents in Fe-based hardfacing alloys using a GTAW technique,Metals and Materials International, 20.4 (2014) 701-712.
DOI: 10.1007/s12540-014-4015-0
Google Scholar
[26]
S. Mridha and T.N. Baker, Overlapping tracks processed by TIG melting TiC preplaced powder on low alloy steel surfaces, Materials Science and Technology, 31.3 (2015) 337-343.
DOI: 10.1179/1743284714y.0000000530
Google Scholar
[27]
C.M. Lin, T.L. Su and K.Y. Wu, Effects of parameter optimization on microstructure and properties of GTAW clad welding on AISI 304L stainless steel using Inconel 52M, The International Journal of Adv Man Techn, 79.9 (2015) 2057-2066.
DOI: 10.1007/s00170-015-6875-y
Google Scholar
[28]
G. Rasool, S. Mridha and M.M. Stack, Mapping wear mechanisms of TiC/Ti composite coatings, Wear, 328 (2015) 498-508.
DOI: 10.1016/j.wear.2015.03.022
Google Scholar
[29]
M.J. Moradi and M. Ketabchi, An experimental study of microstructure and mechanical behavior of alloy 625 weld overlay deposited on ASTM A516 grade 70, Indian Journal of Science and Technology, 8.12 (2015) 1.
DOI: 10.17485/ijst/2015/v8i12/70725
Google Scholar
[30]
A.N. Md Idriss, M.A. Maleque, I.I. Yaacob, R.M. Nasir, S. Mridha and T.N. Baker, Microstructural aspects of wear behaviour of TiC coated low alloy steel, Materials Science and Technology, 32.4 (2016) 303-307.
DOI: 10.1080/02670836.2016.1142049
Google Scholar
[31]
T.M. Chen and H.M. Lee, Surface analysis of AISI 410 stainless steel cladding with AlN, Si, Co, and W powders, Sensors and Materials, 28.9 (2016) 1005-1011.
DOI: 10.18494/sam.2016.1389
Google Scholar
[32]
M. Tavoosi, S. Arjmand and B. Adelimoghaddam, Surface alloying of commercially pure titanium with aluminium and nitrogen using GTAW processing, Surface and Coatings Technology, 311 (2017) 314-320.
DOI: 10.1016/j.surfcoat.2016.12.115
Google Scholar
[33]
C.K. Sahoo and M. Masanta, Microstructure and mechanical properties of TiC-Ni coating on AISI304 steel produced by TIG cladding process, Journal of Materials Processing Technology, 240 (2017) 126-137.
DOI: 10.1016/j.jmatprotec.2016.09.018
Google Scholar
[34]
S. Saroj, C.K. Sahoo and M. Masanta, Microstructure and mechanical performance of TiC-Inconel825 composite coating deposited on AISI 304 steel by TIG cladding process, Journal of Materials Processing Technology, 249 (2017) 490-501.
DOI: 10.1016/j.jmatprotec.2017.06.042
Google Scholar
[35]
S. Kumar, P.K. Ghosh and R. Kumar, Surface modification of AISI 4340 steel by multi-pass TIG arcing process, Journal of Materials Processing Technology, 249 (2017) 394-406.
DOI: 10.1016/j.jmatprotec.2017.06.035
Google Scholar
[36]
X. Shi, K. Yu, L. Jiang, C. Li, Z. Li and X. Zhou, Microstructural characterization of Ni-201 weld cladding onto 304 stainless steel, Surface and Coatings Technology, 334 (2018) 19-28.
DOI: 10.1016/j.surfcoat.2017.11.023
Google Scholar
[37]
K. Song, Z. Wang, S. Hu, S. Zhang and E. Liang, Welding current influences on Inconel 625/X65 cladding interface, Materials and Manufacturing Processes, 33.7 (2018) 770-777.
DOI: 10.1080/10426914.2017.1364851
Google Scholar
[38]
H. Abed, F.M. Ghaini and H.R. Shahverdi, Characterization of Fe49Cr18Mo7B16C4Nb6 high-entropy hardfacing layers produced by gas tungsten arc welding (GTAW) process, Surface and Coatings Technology, 352 (2018) 360-369.
DOI: 10.1016/j.surfcoat.2018.08.019
Google Scholar
[39]
M.N. Fesharaki, R. Shoja-Razavi, H.A. Mansouri and H. Jamali, Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods, Surface and Coatings Technology, 353 (2018) 25-31.
DOI: 10.1016/j.surfcoat.2018.08.061
Google Scholar
[40]
A. Shahroozi, A. Afsari, B. Khakan and A.R. Khalifeh, Microstructure & mech prop investigation of Stellite 6 & Stellite 6/TiC coating on ASTM A105 steel produced by TIG welding process, Surface and Coatings Techn, 350 (2018) 648-658.
DOI: 10.1016/j.surfcoat.2018.07.044
Google Scholar
[41]
D. Tijo, M. Masanta and A.K. Das, In-situ TiC-TiB2 coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution, Surface and Coatings Technology, 344 (2018) 541-552.
DOI: 10.1016/j.surfcoat.2018.03.082
Google Scholar
[42]
D.T. Waghmare, C.K. Padhee, R. Prasad and M. Masanta, NiTi coating on Ti-6Al-4V alloy by TIG cladding process for improvement of wear resistance, Journal of Materials Processing Technology, 262 (2018) 551-561.
DOI: 10.1016/j.jmatprotec.2018.07.033
Google Scholar
[43]
A. Zabihi and R. Soltani, Tribological properties of B4C reinforced aluminum composite coating produced by TIG re-melting of flame sprayed Al-Mg-B4C powder, Surface and Coatings Technology, 349 (2018) 707-718.
DOI: 10.1016/j.surfcoat.2018.06.040
Google Scholar
[44]
D. Tijo and M. Masanta, In-situ TiC-TiB2 coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-II. Mechanical performance, Surface and Coatings Technology, 344 (2018) 579-589.
DOI: 10.1016/j.surfcoat.2018.03.083
Google Scholar
[45]
Z. Fei, Z. Pan, D. Cuiuri, H. Li, B. Wu and L. Su, Improving the weld microstructure and material properties of K-TIG welded armour steel joint using filler material, The International Journal of Adv Manuf Tech, 100.5 (2019) 1931-1944.
DOI: 10.1007/s00170-018-2787-y
Google Scholar
[46]
S. Arjmand, G.R. Khayati and G.H. Akbari, Al/Ti5Si3-Al3Ti composite prepared via in-situ surface coating of Ti using tungsten inert gas welding, Journal of Alloys and Compounds, 808 (2019) 151739.
DOI: 10.1016/j.jallcom.2019.151739
Google Scholar
[47]
A. Evangeline and P. Sathiya, Structure–property relationships of Inconel 625 cladding on AISI 316L substrate produced by hot wire (HW) TIG metal deposition technique, Materials Research Express, 6.10 (2019) 106539.
DOI: 10.1088/2053-1591/ab350f
Google Scholar
[48]
M. Muzamil, J. Wu, M. Akhtar, Z. Zhang, A. Majeed and J. Yang, Modified TIG welding: An approach to improve microstructure and fracto-mechanical behavior by MWCNTs inducement in Al-Mg-Si alloy, Materials, 12.9 (2019) 1441.
DOI: 10.3390/ma12091441
Google Scholar
[49]
S. Bishal, J. Walker, and D. West, Hot-wire GTAW cladding: inconel 625 on 347 stainless steel, The International Journal of Advanced Manufacturing Technology, 102.9-12 (2019) 3839-3848.
DOI: 10.1007/s00170-019-03448-0
Google Scholar
[50]
Z.P. Shi, Z.B. Wang, J.Q. Wang, Y.X. Qiao, H.N. Chen, T.Y. Xiong and Y.G. Zheng, Effect of Ni interlayer on cavitation erosion resistance of NiTi cladding TIG surfacing process, Acta Metallurgica Sinica, 33.3 (2020) 415-424.
DOI: 10.1007/s40195-019-00947-7
Google Scholar
[51]
A. Kumar and A.K. Das, Mechanical properties of Fe+ SiC metal matrix composite fabricated on stainless steel 304 by TIG coating process, International Journal of Materials Engineering Innovation, 113 (2020) 181-197.
DOI: 10.1504/ijmatei.2020.10030642
Google Scholar
[52]
C.R.C. Lima, M.J.X. Belém, H.D.C. Fals and C.A. Della Rovere,, Wear and corrosion performance of Stellite 6® coatings applied by HVOF spraying and GTAW hotwire cladding, Journal of Materials Processing Technology, 284 (2020) 116734.
DOI: 10.1016/j.jmatprotec.2020.116734
Google Scholar
[53]
C.K. Padhee, M. Masanta and A.K. Mondal, Feasibility of Al− TiC coating on AZ91 magnesium alloy by TIG alloying method for tribological application, Transactions of Nonferrous Metals Society of China, 30.6 (2020) 1550-1559.
DOI: 10.1016/s1003-6326(20)65318-3
Google Scholar
[54]
R. Prasad, D.T. Waghmare, K. Kumar and M. Masanta, Effect of overlapping condition on large area NiTi layer deposited on Ti-6Al-4V alloy by TIG cladding technique, Surface and Coatings Technology, 385 (2020) 125417.
DOI: 10.1016/j.surfcoat.2020.125417
Google Scholar
[55]
S. Saroj, A. Sahu and M. Masanta, Geometrical assessment and mechanical characterization of single-line Inconel 825 layer fabricated on AISI 304 steel by TIG cladding method, Surfaces and Interfaces, 20 (2020) 100631.
DOI: 10.1016/j.surfin.2020.100631
Google Scholar
[56]
B.R. Sekhar, R.K. Nayak, S.R. Rout and M. Masanta, Wear characteristic of TiC coated AISI 1020 mild steel fabricated by TIG cladding method, Materials Today: Proceedings, 26 (2020) 3288-3291.
DOI: 10.1016/j.matpr.2020.02.466
Google Scholar
[57]
J. Singh, L. Thakur and S. Angra, An investigation on the parameter optimization and abrasive wear behaviour of nanostructured WC-10Co-4Cr TIG weld cladding, Surface and Coatings Technology, 386 (2020) 125474.
DOI: 10.1016/j.surfcoat.2020.125474
Google Scholar
[58]
J. Singh, L. Thakur and S. Angra, Abrasive wear behavior of WC-10Co-4Cr cladding deposited by TIG welding process, International Journal of Refractory Metals and Hard Materials, 88 (2020) 105198.
DOI: 10.1016/j.ijrmhm.2020.105198
Google Scholar
[59]
D. Malhotra, A.S. Shahi and K. Gupta, Effect of GTAW remelting on the corrosion performance of AISI 316L cladding, Materials and Corrosion, 72.1-2 (2021) 141-153.
DOI: 10.1002/maco.202011666
Google Scholar
[60]
R. Knerek, G.V.B. Lemos, G. Vander Voort, D.A. de Freitas, W. Haupt, R. Landell, and D. Buzzatti, Investigating an API X65 steel pipe cladded with alloy 625, Tecnologia em Metalurgia, Materiais e Mineração, 18 (2021).
DOI: 10.4322/2176-1523.20212465
Google Scholar