[1]
Y. Kuo Shan, J. J. Hsu, C. Y. Chang, Study on the Photocatalytic Degradation of Wastewater under the Optimal Preparation of the Activated Carbon Supported TiO2 Thin Film, Advanced Materials Research. 356–360 (2011) 313–317.
DOI: 10.4028/www.scientific.net/amr.356-360.313
Google Scholar
[2]
Y. Wei-En, H. Her-Hsiung, Improving the biocompatibility of titanium surface through formation of a TiO2 nano-mesh layer, Thin Solid Films. 24, 518 (2010) 7545–7550.
DOI: 10.1016/j.tsf.2010.05.045
Google Scholar
[3]
B. N. Prabitha, V.B. Justinvictor, G. P. Daniel, K. Joy, K. C. J Raju, D. D. Kumar, P.V. Thomas, Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films, Progress in Natural Science: Materials International. 3, 24 (2014) 218-225.
DOI: 10.1016/j.pnsc.2014.05.010
Google Scholar
[4]
M. R. Mogoboya, P. E. Imoisili, T. C. Jen, Dye-Sensitized Solar Cells (DSSCS) Based on a Natural Dye (Mangifera indica): A Mini Review, Key Engineering Materials. 917 (2022) 146–153.
DOI: 10.4028/p-62z506
Google Scholar
[5]
T. S. Senthil, N. Muthukumarasamy, S. Agilan, R. Balasundaraprabhu, C. K. Senthil Kumaran, Effect of Surface Morphology on the Performance of Natural Dye Sensitized TiO2 Thin Film Solar Cell, Advanced Materials Research. 678 (2013) 326–330.
DOI: 10.4028/www.scientific.net/amr.678.326
Google Scholar
[6]
K. Zakrzewska, M. Radecka, TiO2-Based Nanomaterials for Gas Sensing—Influence of Anatase and Rutile Contributions, Nanoscale Res Lett. 12, 89 (2017).
DOI: 10.1186/s11671-017-1875-5
Google Scholar
[7]
R. Vasan, Y. Makableh, M. Manasreh, Comparison of anti-reflective properties of single layer anatase and rutile TiO2 on GaAs based solar cells, MRS Advances. 1 (2016) 957-963.
DOI: 10.1557/adv.2016.116
Google Scholar
[8]
K. M. A. Firas, A. O. Aseel, J. R. Noor, H. A. Saleh, High photocatalytic activity of TiO2 nanorods prepared by simple method, Mater. Res. Express. 6, 6 (2019) 065028.
Google Scholar
[9]
K. S. Khashan, M. S. Ghassan, A. A. Farah, A. Salim, , A. I. Mohammed, A. Tahani, A. A. Abeer, Antibacterial Activity of TiO2 Nanoparticles Prepared by One-Step Laser Ablation in Liquid, Applied Sciences. 10, 11 (2021) 4623.
DOI: 10.3390/app11104623
Google Scholar
[10]
H. Xuelan, L. Zheng, F. Lijun, Y. Jiashu, D. L. Peter, L. Yongdan, Effect of Ti foil size on the micro sizes of anodic TiO2 nanotube array and photoelectrochemical water splitting performance, Chemical Engineering Journal. 425 (2021) 131415.
DOI: 10.1016/j.cej.2021.131415
Google Scholar
[11]
S.R. Meher, L. Balakrishnan, Sol–el derived nanocrystalline TiO2 thin films: A promising candidate for self-cleaning smart window applications, Materials Science in Semiconductor Processing. 26 (2014) 251-258.
DOI: 10.1016/j.mssp.2014.05.006
Google Scholar
[12]
A. Y. Shan, T. I. M. Ghazi, S. A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review, Applied Catalysis A: General. 1-2, 389 (2010) 1-8.
DOI: 10.1016/j.apcata.2010.08.053
Google Scholar
[13]
S. Thammanoon, N. Supachai, Y. Susumu, Positive role of incorporating P-25 TiO2 to mesoporous-assembled TiO2 thin films for improving photocatalytic dye degradation efficiency, Journal of Colloid and Interface Science. 430 (2014) 184-192.
DOI: 10.1016/j.jcis.2014.05.032
Google Scholar
[14]
N. A. M. Asib, M. Z. Musa, S. Abdullah, M. Rusop, Effect of Sputtering Pressure on Optimization of Titanium Dioxide Nanostructures Preparedby RF Magnetron Sputtering, Advanced Materials Research. 667 (2013) 452–457.
DOI: 10.4028/www.scientific.net/amr.667.452
Google Scholar
[15]
Y. Liu, H. M. Huang, X. D. Lin, Structural and Optical Properties of Pulse Laser Deposited TiO2 Thin Films, Key Engineering Materials. 537 (2013) 224–228.
DOI: 10.4028/www.scientific.net/kem.537.224
Google Scholar
[16]
L. H. Xu, G. G. Zheng, Y. L. Chen, J. Su, Investigation of Phase Transformation and Optical Properties of TiO2Thin Films Deposited by Electron Beam Evaporation, Advanced Materials Research. 941–944 (2014) 1279–1282.
DOI: 10.4028/www.scientific.net/amr.941-944.1279
Google Scholar
[17]
L. A. Luu Thi, D. H. Nguyen, M. M. Neto, N. T. Nguyen, T. S. Vo, Characterization of Nanocrystalline Titania Thin Film Deposited by Spray Pyrolysis Technique, Advanced Materials Research. 875–877 (2014) 49–53.
DOI: 10.4028/www.scientific.net/amr.875-877.49
Google Scholar
[18]
F. Maury, J. Mungkalasiri, Chemical Vapor Deposition of TiO2 for Photocatalytic Applications and Biocidal Surfaces, Key Engineering Materials. 415 (2009) 1–4.
DOI: 10.4028/www.scientific.net/kem.415.1
Google Scholar
[19]
S. K. M. Maarof, M. Rusop, S. Abdullah, Effect of Annealing Temperature on TiO2 Nanostructured Prepared by Sol-Gel Method, Advanced Materials Research. 832 (2013) 763–766.
DOI: 10.4028/www.scientific.net/amr.832.763
Google Scholar
[20]
W. Yan, H. Yiming, L. Qinghua, F. Maohong, Review of the progress in preparing nanoTiO2: An important environmental engineering material, Journal of Environmental Sciences. 11, 26 (2014) 2139-2177.
Google Scholar
[21]
F. Atay, D. Durmaz, Structural, Optical and Surface Properties of Multilayer Anatase- TiO2 Films Grown by Sol–Gel Spin Coating Technique, J. Electron. Mater. 49 (2020) 5542–5551.
DOI: 10.1007/s11664-020-08304-6
Google Scholar
[22]
A.K. Muaz, U. Hashim, F. Ibrahim, K.L Thong, M.S. Mohktar, W. Liu, Effect of annealing temperatures on the morphology, optical and electrical properties of TiO2 thin films synthesized by the sol–gel method and deposited on Al/ TiO2/SiO2/p-Si. Microsystem Technologies. 4, 22 (2016) 871-881.
DOI: 10.1007/s00542-015-2514-7
Google Scholar
[23]
W. C. Tzou, H. Kuan, Y. C. Chang, Influence of Annealing Temperature on the Properties of Sol-Gel Deposited Nb-Doped TiO2 Thin Films, Key Engineering Materials. 845 (2020) 59–64.
DOI: 10.4028/www.scientific.net/kem.845.59
Google Scholar
[24]
K. A. Razak, S. C. H.Dewi, M. M. A. Al Bakri, M. A. A. MohdSalleh, N. Mahmed, N.S. Danial, Effect of Annealing Temperature on Silver Doped Titanium Dioxide (Ag/TiO2) Thin Film via Sol-Gel Method, Solid State Phenomena. 280 (2018) 26–30.
DOI: 10.4028/www.scientific.net/ssp.280.26
Google Scholar
[25]
K. M. Y. han, A. D. Chandio, M. Sohail, M. Arsalan, M. W. Akhtar, S. Z. Abbas, Z. Akhtar, Low Temperature Synthesis of Anatase TiO2 Nanoparticles and its Application in Nanocrystalline Thin Films, Key Engineering Materials. 778 (2018) 86–90.
DOI: 10.4028/www.scientific.net/kem.778.86
Google Scholar
[26]
B.D. Cullity, Elements of X-Ray Diffraction, 2nd Edition., Addison-Wesley Publishing Company Inc., Phillippines, (1978).
Google Scholar
[27]
A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, S. Agilan, Effect of annealing temperature on nanocrystallineTiO2 thin films prepared by sol–gel dip coating method, Optik. 23, 124 (2013) 6201-6204.
DOI: 10.1016/j.ijleo.2013.04.085
Google Scholar
[28]
M. C. Ferrara, L Pilloni, S. Mazzarelli, L. Tapfer, Hydrophilic and optical properties of nanostructured titania prepared by sol gel dip coating, Journal of Physics D: Applied Physics. 9, 43 (2010) 095301.
DOI: 10.1088/0022-3727/43/9/095301
Google Scholar
[29]
O. Toshiaki, Temperature Dependence of the Raman Spectrum in Anatase TiO2, Journal of the Physical Society of Japan. 5, 48 (1980) 1661-1668.
Google Scholar
[30]
D. Yang, Titanium Dioxide - Material for a Sustainable Environment, IntechOpen, London, (2018).
Google Scholar
[31]
M. H. Habibi, N. Talebian, J. Choi, The effect of annealing on photocatalytic properties of nanostructured titanium dioxide thin films, Dyes and Pigments. 1, 73 (2007) 103-110.
DOI: 10.1016/j.dyepig.2005.10.016
Google Scholar
[32]
J. Tauc, Absorption edge and internal electric fields in amorphous semiconductors, Materials Research Bulletin. 8, 5 (1970) 721-729.
DOI: 10.1016/0025-5408(70)90112-1
Google Scholar
[33]
L. Zhe-Ming, P. Lan, T. Ai-Wei, Fluoride-assisted synthesis of anataseTiO2 nanocrystals with tunable shape and band gap via a solvothermal approach, Chin. Chem. Lett. 9, 27 (2016) 1801-1804.
DOI: 10.1016/j.cclet.2016.04.016
Google Scholar
[34]
L. E. Brus, Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State, The Journal of Chemical Physics. 9, 80 (1984) 4403-4409.
DOI: 10.1063/1.447218
Google Scholar
[35]
G. Kenanakis, D. Vernardou, A. Dalamagkas, N. Katsarakisn, Photocatalytic and electrooxidation properties of TiO2 thin films deposited by sol–gel, Catalysis Today. Part A, 240 (2015) 146–152.
DOI: 10.1016/j.cattod.2014.05.007
Google Scholar
[36]
M. Beaudoin, M. Meunier, C.J. Arsenault, Blue shift of the optical band gap: implications for the quantum confinement effect in a-Si:H/a-SiNx: H multi layers, Physcal Rev B. 4, 47 (1993) 2197-2202.
Google Scholar
[37]
A. El-Denglawey; Illumination effect on the structural and optical properties of nano meso nickel (II) tetraphenyl-21H, 23H-porphyrin films induces new two hours photo bleached optical sensor, J Lumin. 194 (2018) 381-386.
DOI: 10.1016/j.jlumin.2017.10.070
Google Scholar
[38]
I. Sta, M. Jlassi, M. Hajji, M.F. Boujmil, R. Jerbi, M. Kandyla, M. Kompitsas, and H. Ezzaouia, Structural and optical properties of TiO2 thin films prepared by spin coating, Journal of Sol-Gel Science and Technology. 2, 72 (2014) 421-427.
DOI: 10.1007/s10971-014-3452-z
Google Scholar