Structural and Optical Properties of TiO2 Thin Films prepared by the Dip-Coating Method: Effect of Thickness and Annealing Temperature

Article Preview

Abstract:

In this work, the Sol-Gel dip-coating technique is used to report the effect of thickness and annealing temperature on structural and optical properties of TiO2 thin films. To study the effect of the annealing temperature, the prepared samples were annealed at different temperatures: 300, 400, and 500 °C for 1 h. By increasing the annealing temperature, an amelioration of the crystalline quality is observed. The best crystalline quality was obtained at 500 °C. Additionally, the band gap value Eg, evaluated from transmission spectra, does not vary with the increasing of the annealing temperature. All the films with different thicknesses present crystalize in the Anatase structure, and the crystallite size value does not practically change with thickness increase. It was also found that the TiO2 film band gap value decreases with the film thickness increase, demonstrating the possibility of band gap tuning by varying the TiO2 film thickness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-25

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Kuo Shan, J. J. Hsu, C. Y. Chang, Study on the Photocatalytic Degradation of Wastewater under the Optimal Preparation of the Activated Carbon Supported TiO2 Thin Film, Advanced Materials Research. 356–360 (2011) 313–317.

DOI: 10.4028/www.scientific.net/amr.356-360.313

Google Scholar

[2] Y. Wei-En, H. Her-Hsiung, Improving the biocompatibility of titanium surface through formation of a TiO2 nano-mesh layer, Thin Solid Films. 24, 518 (2010) 7545–7550.

DOI: 10.1016/j.tsf.2010.05.045

Google Scholar

[3] B. N. Prabitha, V.B. Justinvictor, G. P. Daniel, K. Joy, K. C. J Raju, D. D. Kumar, P.V. Thomas, Optical parameters induced by phase transformation in RF magnetron sputtered TiO2 nanostructured thin films, Progress in Natural Science: Materials International. 3, 24 (2014) 218-225.

DOI: 10.1016/j.pnsc.2014.05.010

Google Scholar

[4] M. R. Mogoboya, P. E. Imoisili, T. C. Jen, Dye-Sensitized Solar Cells (DSSCS) Based on a Natural Dye (Mangifera indica): A Mini Review, Key Engineering Materials. 917 (2022) 146–153.

DOI: 10.4028/p-62z506

Google Scholar

[5] T. S. Senthil, N. Muthukumarasamy, S. Agilan, R. Balasundaraprabhu, C. K. Senthil Kumaran, Effect of Surface Morphology on the Performance of Natural Dye Sensitized TiO2 Thin Film Solar Cell, Advanced Materials Research. 678 (2013) 326–330.

DOI: 10.4028/www.scientific.net/amr.678.326

Google Scholar

[6] K. Zakrzewska, M. Radecka, TiO2-Based Nanomaterials for Gas Sensing—Influence of Anatase and Rutile Contributions, Nanoscale Res Lett. 12, 89 (2017).

DOI: 10.1186/s11671-017-1875-5

Google Scholar

[7] R. Vasan, Y. Makableh, M. Manasreh, Comparison of anti-reflective properties of single layer anatase and rutile TiO2 on GaAs based solar cells, MRS Advances. 1 (2016) 957-963.

DOI: 10.1557/adv.2016.116

Google Scholar

[8] K. M. A. Firas, A. O. Aseel, J. R. Noor, H. A. Saleh, High photocatalytic activity of TiO2 nanorods prepared by simple method, Mater. Res. Express. 6, 6 (2019) 065028.

Google Scholar

[9] K. S. Khashan, M. S. Ghassan, A. A. Farah, A. Salim, , A. I. Mohammed, A. Tahani, A. A. Abeer, Antibacterial Activity of TiO2 Nanoparticles Prepared by One-Step Laser Ablation in Liquid, Applied Sciences. 10, 11 (2021) 4623.

DOI: 10.3390/app11104623

Google Scholar

[10] H. Xuelan, L. Zheng, F. Lijun, Y. Jiashu, D. L. Peter, L. Yongdan, Effect of Ti foil size on the micro sizes of anodic TiO2 nanotube array and photoelectrochemical water splitting performance, Chemical Engineering Journal. 425 (2021) 131415.

DOI: 10.1016/j.cej.2021.131415

Google Scholar

[11] S.R. Meher, L. Balakrishnan, Sol–el derived nanocrystalline TiO2 thin films: A promising candidate for self-cleaning smart window applications, Materials Science in Semiconductor Processing. 26 (2014) 251-258.

DOI: 10.1016/j.mssp.2014.05.006

Google Scholar

[12] A. Y. Shan, T. I. M. Ghazi, S. A. Rashid, Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review, Applied Catalysis A: General. 1-2, 389 (2010) 1-8.

DOI: 10.1016/j.apcata.2010.08.053

Google Scholar

[13] S. Thammanoon, N. Supachai, Y. Susumu, Positive role of incorporating P-25 TiO2 to mesoporous-assembled TiO2 thin films for improving photocatalytic dye degradation efficiency, Journal of Colloid and Interface Science. 430 (2014) 184-192.

DOI: 10.1016/j.jcis.2014.05.032

Google Scholar

[14] N. A. M. Asib, M. Z. Musa, S. Abdullah, M. Rusop, Effect of Sputtering Pressure on Optimization of Titanium Dioxide Nanostructures Preparedby RF Magnetron Sputtering, Advanced Materials Research. 667 (2013) 452–457.

DOI: 10.4028/www.scientific.net/amr.667.452

Google Scholar

[15] Y. Liu, H. M. Huang, X. D. Lin, Structural and Optical Properties of Pulse Laser Deposited TiO2 Thin Films, Key Engineering Materials. 537 (2013) 224–228.

DOI: 10.4028/www.scientific.net/kem.537.224

Google Scholar

[16] L. H. Xu, G. G. Zheng, Y. L. Chen, J. Su, Investigation of Phase Transformation and Optical Properties of TiO2Thin Films Deposited by Electron Beam Evaporation, Advanced Materials Research. 941–944 (2014) 1279–1282.

DOI: 10.4028/www.scientific.net/amr.941-944.1279

Google Scholar

[17] L. A. Luu Thi, D. H. Nguyen, M. M. Neto, N. T. Nguyen, T. S. Vo, Characterization of Nanocrystalline Titania Thin Film Deposited by Spray Pyrolysis Technique, Advanced Materials Research. 875–877 (2014) 49–53.

DOI: 10.4028/www.scientific.net/amr.875-877.49

Google Scholar

[18] F. Maury, J. Mungkalasiri, Chemical Vapor Deposition of TiO2 for Photocatalytic Applications and Biocidal Surfaces, Key Engineering Materials. 415 (2009) 1–4.

DOI: 10.4028/www.scientific.net/kem.415.1

Google Scholar

[19] S. K. M. Maarof, M. Rusop, S. Abdullah, Effect of Annealing Temperature on TiO2 Nanostructured Prepared by Sol-Gel Method, Advanced Materials Research. 832 (2013) 763–766.

DOI: 10.4028/www.scientific.net/amr.832.763

Google Scholar

[20] W. Yan, H. Yiming, L. Qinghua, F. Maohong, Review of the progress in preparing nanoTiO2: An important environmental engineering material, Journal of Environmental Sciences. 11, 26 (2014) 2139-2177.

Google Scholar

[21] F. Atay, D. Durmaz, Structural, Optical and Surface Properties of Multilayer Anatase- TiO2 Films Grown by Sol–Gel Spin Coating Technique, J. Electron. Mater. 49 (2020) 5542–5551.

DOI: 10.1007/s11664-020-08304-6

Google Scholar

[22] A.K. Muaz, U. Hashim, F. Ibrahim, K.L Thong, M.S. Mohktar, W. Liu, Effect of annealing temperatures on the morphology, optical and electrical properties of TiO2 thin films synthesized by the sol–gel method and deposited on Al/ TiO2/SiO2/p-Si. Microsystem Technologies. 4, 22 (2016) 871-881.

DOI: 10.1007/s00542-015-2514-7

Google Scholar

[23] W. C. Tzou, H. Kuan, Y. C. Chang, Influence of Annealing Temperature on the Properties of Sol-Gel Deposited Nb-Doped TiO2 Thin Films, Key Engineering Materials. 845 (2020) 59–64.

DOI: 10.4028/www.scientific.net/kem.845.59

Google Scholar

[24] K. A. Razak, S. C. H.Dewi, M. M. A. Al Bakri, M. A. A. MohdSalleh, N. Mahmed, N.S. Danial, Effect of Annealing Temperature on Silver Doped Titanium Dioxide (Ag/TiO2) Thin Film via Sol-Gel Method, Solid State Phenomena. 280 (2018) 26–30.

DOI: 10.4028/www.scientific.net/ssp.280.26

Google Scholar

[25] K. M. Y. han, A. D. Chandio, M. Sohail, M. Arsalan, M. W. Akhtar, S. Z. Abbas, Z. Akhtar, Low Temperature Synthesis of Anatase TiO2 Nanoparticles and its Application in Nanocrystalline Thin Films, Key Engineering Materials. 778 (2018) 86–90.

DOI: 10.4028/www.scientific.net/kem.778.86

Google Scholar

[26] B.D. Cullity, Elements of X-Ray Diffraction, 2nd Edition., Addison-Wesley Publishing Company Inc., Phillippines, (1978).

Google Scholar

[27] A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, R. Balasundaraprabhu, S. Agilan, Effect of annealing temperature on nanocrystallineTiO2 thin films prepared by sol–gel dip coating method, Optik. 23, 124 (2013) 6201-6204.

DOI: 10.1016/j.ijleo.2013.04.085

Google Scholar

[28] M. C. Ferrara, L Pilloni, S. Mazzarelli, L. Tapfer, Hydrophilic and optical properties of nanostructured titania prepared by sol gel dip coating, Journal of Physics D: Applied Physics. 9, 43 (2010) 095301.

DOI: 10.1088/0022-3727/43/9/095301

Google Scholar

[29] O. Toshiaki, Temperature Dependence of the Raman Spectrum in Anatase TiO2, Journal of the Physical Society of Japan. 5, 48 (1980) 1661-1668.

Google Scholar

[30] D. Yang, Titanium Dioxide - Material for a Sustainable Environment, IntechOpen, London, (2018).

Google Scholar

[31] M. H. Habibi, N. Talebian, J. Choi, The effect of annealing on photocatalytic properties of nanostructured titanium dioxide thin films, Dyes and Pigments. 1, 73 (2007) 103-110.

DOI: 10.1016/j.dyepig.2005.10.016

Google Scholar

[32] J. Tauc, Absorption edge and internal electric fields in amorphous semiconductors, Materials Research Bulletin. 8, 5 (1970) 721-729.

DOI: 10.1016/0025-5408(70)90112-1

Google Scholar

[33] L. Zhe-Ming, P. Lan, T. Ai-Wei, Fluoride-assisted synthesis of anataseTiO2 nanocrystals with tunable shape and band gap via a solvothermal approach, Chin. Chem. Lett. 9, 27 (2016) 1801-1804.

DOI: 10.1016/j.cclet.2016.04.016

Google Scholar

[34] L. E. Brus, Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State, The Journal of Chemical Physics. 9, 80 (1984) 4403-4409.

DOI: 10.1063/1.447218

Google Scholar

[35] G. Kenanakis, D. Vernardou, A. Dalamagkas, N. Katsarakisn, Photocatalytic and electrooxidation properties of TiO2 thin films deposited by sol–gel, Catalysis Today. Part A, 240 (2015) 146–152.

DOI: 10.1016/j.cattod.2014.05.007

Google Scholar

[36] M. Beaudoin, M. Meunier, C.J. Arsenault, Blue shift of the optical band gap: implications for the quantum confinement effect in a-Si:H/a-SiNx: H multi layers, Physcal Rev B. 4, 47 (1993) 2197-2202.

Google Scholar

[37] A. El-Denglawey; Illumination effect on the structural and optical properties of nano meso nickel (II) tetraphenyl-21H, 23H-porphyrin films induces new two hours photo bleached optical sensor, J Lumin. 194 (2018) 381-386.

DOI: 10.1016/j.jlumin.2017.10.070

Google Scholar

[38] I. Sta, M. Jlassi, M. Hajji, M.F. Boujmil, R. Jerbi, M. Kandyla, M. Kompitsas, and H. Ezzaouia, Structural and optical properties of TiO2 thin films prepared by spin coating, Journal of Sol-Gel Science and Technology. 2, 72 (2014) 421-427.

DOI: 10.1007/s10971-014-3452-z

Google Scholar