Fabrication of Vinyl Functionalised Multiwalled Carbon Nanotubes for the Removal of Organic Pollutant

Article Preview

Abstract:

A novel and convenient approach for the fabrication of vinyl functionalized multiwalled carbon nanotube (MWCNT) as a sorbent for organic pollutant is described in this article. In this method, the purified MWCNT is functionalized via a non-covalent strategy using 9-vinyl anthracene, fluorescent active species. The synthesised nanotube was characterised using various techniques such as Fourier transform infrared spectroscopy (FT-IR), UV-Vis. spectroscopic analysis, scanning electron microscopy (SEM), X-ray diffraction technique (XRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM) and Raman spectroscopy. Effects of concentration, pH and time for the functionalization of MWCNTs were investigated through photoluminescence (PL) studies. The resulting vinyl functionalized MWCNT will act as a promising adsorbent for organic pollutants like p-chlorobenzoic acid.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-72

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. V Herrera-herrera, M.Á. González-curbelo, J. Hernández-borges, M.Á. Rodríguez-delgado, Carbon nanotubes applications in separation science : A review, Anal. Chim. Acta. 734 (2012) 1–30. https://doi.org/10.1016/j.aca.2012.04.035.

DOI: 10.1016/j.aca.2012.04.035

Google Scholar

[2] S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos, Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules., Adv. Mater. 19 (2007) 3214–3228. https://doi.org/10.1002/adma.200700665.

DOI: 10.1002/adma.200700665

Google Scholar

[3] C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: Carbon nanotube based electrochemical sensors for biomolecules, Anal. Chim. Acta. 662 (2010) 105–127. https://doi.org/10.1016/j.aca.2010.01.009.

DOI: 10.1016/j.aca.2010.01.009

Google Scholar

[4] T.M.B.F. Oliveira, New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes, Appl. Sci. 8 (2018) 5–7. https://doi.org/10.3390/app8101925.

Google Scholar

[5] K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes, Small. 1 (2005) 180–192. https://doi.org/10.1002/smll.200400118.

DOI: 10.1002/smll.200400118

Google Scholar

[6] V.N. Popov, Carbon nanotubes : properties and application, Mater. Sci. Eng. R. 43 (2004) 61–102. https://doi.org/10.1016/j.mser.2003.10.001.

Google Scholar

[7] S. Ciraci, S. Dag, T. Yildirim, O. Gulseren, R.T. Senger, Functionalized carbon nanotubes and device applications, J. Phys. Condens. Matter. 16 (2004) 901–960. https://doi.org/10.1088/ 0953-8984/16/29/r01.

DOI: 10.1088/0953-8984/16/29/r01

Google Scholar

[8] P.M. Ajayan, O.Z. Zhou, Applications of Carbon Nanotubes, Top. Appl. Phys. 425 (2001) 391-425.

Google Scholar

[9] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of Carbon Nanotubes, Chem. Rev. 106 (2006) 1105–1136.

DOI: 10.1021/cr050569o

Google Scholar

[10] M. Prato, K. Kostarelos, A. Bianco, Functionalized Carbon Nanotubes in Drug, Acc. Chem. Res. 41 (2008) 60–68.

DOI: 10.1021/ar700089b

Google Scholar

[11] Z. Yang, A. Yu, C. Shan, G. Gao, B. Pan, Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes, Water Res. 137 (2018) 37–46. https://doi.org/10.1016/J.WATRES.2018.03.006.

DOI: 10.1016/j.watres.2018.03.006

Google Scholar

[12] K.A. Wepasnick, B.A. Smith, J.L. Bitter, D. Howard Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Anal. Bioanal. Chem. 396 (2010) 1003–1014. https://doi.org/10.1007/s00216-009-3332-5.

DOI: 10.1007/s00216-009-3332-5

Google Scholar

[13] T. Belin, F. Epron, Characterization methods of carbon nanotubes : a review, Mater. Sci. Eng. B. 119 (2005) 105–118. https://doi.org/10.1016/j.mseb.2005.02.046.

Google Scholar

[14] M. Youssry, M. Al-Ruwaidhi, M. Zakeri, M. Zakeri, Physical functionalization of multi-walled carbon nanotubes for enhanced dispersibility in aqueous medium, Emergent Mater. 3 (2020) 25–32. https://doi.org/10.1007/S42247-020-00076-3/FIGURES/7.

DOI: 10.1007/s42247-020-00076-3

Google Scholar

[15] T. Ahamad, M. Naushad, G.E. Eldesoky, S.I. Al-Saeedi, A. Nafady, N.S. Al-Kadhi, A.H. Al-Muhtaseb, A.A. Khan, A. Khan, Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes, J. Mol. Liq. 282 (2019) 154–161. https://doi.org/10.1016/J.MOLLIQ.2019.02.128.

DOI: 10.1016/j.molliq.2019.02.128

Google Scholar

[16] N. Nakayama-Ratchford, S. Bangsaruntip, X. Sun, K. Welsher, H. Dai, Noncovalent functionalization of carbon nanotubes by fluorescein- polyethylene glycol: Supramolecular conjugates with pH-dependent absorbance and fluorescence, J. Am. Chem. Soc. 129 (2007) 2448–2449. https://doi.org/10.1021/ja068684j.

DOI: 10.1021/ja068684j

Google Scholar

[17] Y. Zhou, Y. Fang, R.P. Ramasamy, Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development, Sensors. 19 (2019) 392. https://doi.org/10.3390/s19020392.

DOI: 10.3390/s19020392

Google Scholar

[18] C.Y. Hu, Y.J. Xu, S.W. Duo, R.F. Zhang, M.S. Li, Non-covalent functionalization of carbon nanotubes with surfactants and polymers, J. Chinese Chem. Soc. 56 (2009) 234–239. https://doi.org/10.1002/jccs.200900033.

DOI: 10.1002/jccs.200900033

Google Scholar

[19] P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, G. Sakellariou, Non-covalent functionalization of carbon nanotubes with polymers, RSC Adv. 4 (2014) 2911–2934. https://doi.org/10.1039/c3ra44906h.

DOI: 10.1039/c3ra44906h

Google Scholar

[20] J. Zhao, J.P. Lu, J. Han, C.K. Yang, Noncovalent functionalization of carbon nanotubes by aromatic organic molecules, Appl. Phys. Lett. 82 (2003) 3746–3748. https://doi.org/10.1063/1. 1577381.

DOI: 10.1063/1.1577381

Google Scholar

[21] A. Murray, B. Örmeci, Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: A review, Environ. Sci. Pollut. Res. 19 (2012) 3820–3830. https://doi.org/10.1007/s11356-012-1119-2.

DOI: 10.1007/s11356-012-1119-2

Google Scholar

[22] V. Pichon, F. Chapuis, Role of molecularly imprinted polymers for selective determination of environmental pollutants - A review, Anal. Chim. Acta. 622 (2008) 48–61. https://doi.org/ 10.1016/J.ACA.2008.05.057.

DOI: 10.1016/j.aca.2008.05.057

Google Scholar

[23] Y. Qu, X. Li, S. Lian, C. Dai, Z. Jv, B. Zhao, H. Zhou, Biosynthesis of gold nanoparticles using fungus Trichoderma sp. WL‐Go and their catalysis in degradation of aromatic pollutants, IET Nanobiotechnology. 13 (2019) 12–17. https://doi.org/10.1049/iet-nbt.2018.5177.

DOI: 10.1049/iet-nbt.2018.5177

Google Scholar

[24] J. Seetharamappa, S. Yellappa, F. D'Souza, Carbon Nanotubes : next generation of electronic materials, Electrochem. Soc. Interface. 15 (2006) 23–26.

DOI: 10.1149/2.f02062if

Google Scholar

[25] A.U. Alam, M.J. Deen, Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes, Anal. Chem. 92 (2020) 5532–5539. https://doi.org/10.1021/ACS.ANALCHEM.0C00402/SUPPL_FILE/AC0C00402_SI_001.PDF.

DOI: 10.1021/acs.analchem.0c00402

Google Scholar

[26] M. Endo, M.S. Strano, P.M. Ajayan, Potential Applications of Carbon Nanotubes, Top. Appl. Phys. 111 (2008) 13–62.

Google Scholar

[27] M. Saxena, N. Sharma, R. Saxena, Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes, Surfaces and Interfaces. 21 (2020). https://doi.org/10.1016/J.SURFIN.2020.100639.

DOI: 10.1016/j.surfin.2020.100639

Google Scholar

[28] Y. Wang, Q. He, H. Wei, H. Gu, J. Guo, A. Mohammed, M.R. Mohammad, D.S. Ahmed, Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes, IOP Conf. Ser. Mater. Sci. Eng. 757 (2020). https://doi.org/10.1088/1757-899X/757/1/012028.

DOI: 10.1088/1757-899x/757/1/012028

Google Scholar

[29] Y.S.S. Al-Faiyz, M. Gouda, Multi-Walled Carbon Nanotubes Functionalized with Hydroxamic Acid Derivatives for the Removal of Lead from Wastewater: Kinetics, Isotherm, and Thermodynamic Studies, Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14183870.

DOI: 10.3390/polym14183870

Google Scholar

[30] M. V. Kharlamova, M. Paukov, M.G. Burdanova, Nanotube Functionalization: Investigation, Methods and Demonstrated Applications, Materials (Basel). 15 (2022) 1–24. https://doi.org/10.3390/ma15155386.

DOI: 10.3390/ma15155386

Google Scholar

[31] D.S. Primastari, Y. Kusumastuti, M. Handayani, Rochmadi, Functionalization of multi-walled carbon nanotube (MWCNT) with CTACe surfactant and polyethylene glycol as potential drug carrier, IOP Conf. Ser. Earth Environ. Sci. 963 (2022). https://doi.org/10.1088/1755-1315/963/1/012033.

DOI: 10.1088/1755-1315/963/1/012033

Google Scholar

[32] V. Patel, U. Joshi, A. Joshi, A.D. Oza, C. Prakash, E. Linul, R.D.S.G. Campilho, S. Kumar, K.K. Saxena, Strength Evaluation of Functionalized MWCNT-Reinforced Polymer Nanocomposites Synthesized Using a 3D Mixing Approach, Materials (Basel). 15 (2022). https://doi.org/10.3390/ma15207263.

DOI: 10.3390/ma15207263

Google Scholar

[33] X.L. Zhang, Y. Zhang, X.F. Yin, B.B. Du, C. Zheng, H.H. Yang, A facile approach for preparation of molecularly imprinted polymers layer on the surface of carbon nanotubes, Talanta. 105 (2013) 403–408. https://doi.org/10.1016/j.talanta.2012.10.062.

DOI: 10.1016/j.talanta.2012.10.062

Google Scholar

[34] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47–99. https://doi.org/10.1016/j.physrep.2004.10.006.

DOI: 10.1016/j.physrep.2004.10.006

Google Scholar