[1]
A. V Herrera-herrera, M.Á. González-curbelo, J. Hernández-borges, M.Á. Rodríguez-delgado, Carbon nanotubes applications in separation science : A review, Anal. Chim. Acta. 734 (2012) 1–30. https://doi.org/10.1016/j.aca.2012.04.035.
DOI: 10.1016/j.aca.2012.04.035
Google Scholar
[2]
S.N. Kim, J.F. Rusling, F. Papadimitrakopoulos, Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules., Adv. Mater. 19 (2007) 3214–3228. https://doi.org/10.1002/adma.200700665.
DOI: 10.1002/adma.200700665
Google Scholar
[3]
C.B. Jacobs, M.J. Peairs, B.J. Venton, Review: Carbon nanotube based electrochemical sensors for biomolecules, Anal. Chim. Acta. 662 (2010) 105–127. https://doi.org/10.1016/j.aca.2010.01.009.
DOI: 10.1016/j.aca.2010.01.009
Google Scholar
[4]
T.M.B.F. Oliveira, New Generation of Electrochemical Sensors Based on Multi-Walled Carbon Nanotubes, Appl. Sci. 8 (2018) 5–7. https://doi.org/10.3390/app8101925.
Google Scholar
[5]
K. Balasubramanian, M. Burghard, Chemically functionalized carbon nanotubes, Small. 1 (2005) 180–192. https://doi.org/10.1002/smll.200400118.
DOI: 10.1002/smll.200400118
Google Scholar
[6]
V.N. Popov, Carbon nanotubes : properties and application, Mater. Sci. Eng. R. 43 (2004) 61–102. https://doi.org/10.1016/j.mser.2003.10.001.
Google Scholar
[7]
S. Ciraci, S. Dag, T. Yildirim, O. Gulseren, R.T. Senger, Functionalized carbon nanotubes and device applications, J. Phys. Condens. Matter. 16 (2004) 901–960. https://doi.org/10.1088/ 0953-8984/16/29/r01.
DOI: 10.1088/0953-8984/16/29/r01
Google Scholar
[8]
P.M. Ajayan, O.Z. Zhou, Applications of Carbon Nanotubes, Top. Appl. Phys. 425 (2001) 391-425.
Google Scholar
[9]
D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of Carbon Nanotubes, Chem. Rev. 106 (2006) 1105–1136.
DOI: 10.1021/cr050569o
Google Scholar
[10]
M. Prato, K. Kostarelos, A. Bianco, Functionalized Carbon Nanotubes in Drug, Acc. Chem. Res. 41 (2008) 60–68.
DOI: 10.1021/ar700089b
Google Scholar
[11]
Z. Yang, A. Yu, C. Shan, G. Gao, B. Pan, Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes, Water Res. 137 (2018) 37–46. https://doi.org/10.1016/J.WATRES.2018.03.006.
DOI: 10.1016/j.watres.2018.03.006
Google Scholar
[12]
K.A. Wepasnick, B.A. Smith, J.L. Bitter, D. Howard Fairbrother, Chemical and structural characterization of carbon nanotube surfaces, Anal. Bioanal. Chem. 396 (2010) 1003–1014. https://doi.org/10.1007/s00216-009-3332-5.
DOI: 10.1007/s00216-009-3332-5
Google Scholar
[13]
T. Belin, F. Epron, Characterization methods of carbon nanotubes : a review, Mater. Sci. Eng. B. 119 (2005) 105–118. https://doi.org/10.1016/j.mseb.2005.02.046.
Google Scholar
[14]
M. Youssry, M. Al-Ruwaidhi, M. Zakeri, M. Zakeri, Physical functionalization of multi-walled carbon nanotubes for enhanced dispersibility in aqueous medium, Emergent Mater. 3 (2020) 25–32. https://doi.org/10.1007/S42247-020-00076-3/FIGURES/7.
DOI: 10.1007/s42247-020-00076-3
Google Scholar
[15]
T. Ahamad, M. Naushad, G.E. Eldesoky, S.I. Al-Saeedi, A. Nafady, N.S. Al-Kadhi, A.H. Al-Muhtaseb, A.A. Khan, A. Khan, Effective and fast adsorptive removal of toxic cationic dye (MB) from aqueous medium using amino-functionalized magnetic multiwall carbon nanotubes, J. Mol. Liq. 282 (2019) 154–161. https://doi.org/10.1016/J.MOLLIQ.2019.02.128.
DOI: 10.1016/j.molliq.2019.02.128
Google Scholar
[16]
N. Nakayama-Ratchford, S. Bangsaruntip, X. Sun, K. Welsher, H. Dai, Noncovalent functionalization of carbon nanotubes by fluorescein- polyethylene glycol: Supramolecular conjugates with pH-dependent absorbance and fluorescence, J. Am. Chem. Soc. 129 (2007) 2448–2449. https://doi.org/10.1021/ja068684j.
DOI: 10.1021/ja068684j
Google Scholar
[17]
Y. Zhou, Y. Fang, R.P. Ramasamy, Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development, Sensors. 19 (2019) 392. https://doi.org/10.3390/s19020392.
DOI: 10.3390/s19020392
Google Scholar
[18]
C.Y. Hu, Y.J. Xu, S.W. Duo, R.F. Zhang, M.S. Li, Non-covalent functionalization of carbon nanotubes with surfactants and polymers, J. Chinese Chem. Soc. 56 (2009) 234–239. https://doi.org/10.1002/jccs.200900033.
DOI: 10.1002/jccs.200900033
Google Scholar
[19]
P. Bilalis, D. Katsigiannopoulos, A. Avgeropoulos, G. Sakellariou, Non-covalent functionalization of carbon nanotubes with polymers, RSC Adv. 4 (2014) 2911–2934. https://doi.org/10.1039/c3ra44906h.
DOI: 10.1039/c3ra44906h
Google Scholar
[20]
J. Zhao, J.P. Lu, J. Han, C.K. Yang, Noncovalent functionalization of carbon nanotubes by aromatic organic molecules, Appl. Phys. Lett. 82 (2003) 3746–3748. https://doi.org/10.1063/1. 1577381.
DOI: 10.1063/1.1577381
Google Scholar
[21]
A. Murray, B. Örmeci, Application of molecularly imprinted and non-imprinted polymers for removal of emerging contaminants in water and wastewater treatment: A review, Environ. Sci. Pollut. Res. 19 (2012) 3820–3830. https://doi.org/10.1007/s11356-012-1119-2.
DOI: 10.1007/s11356-012-1119-2
Google Scholar
[22]
V. Pichon, F. Chapuis, Role of molecularly imprinted polymers for selective determination of environmental pollutants - A review, Anal. Chim. Acta. 622 (2008) 48–61. https://doi.org/ 10.1016/J.ACA.2008.05.057.
DOI: 10.1016/j.aca.2008.05.057
Google Scholar
[23]
Y. Qu, X. Li, S. Lian, C. Dai, Z. Jv, B. Zhao, H. Zhou, Biosynthesis of gold nanoparticles using fungus Trichoderma sp. WL‐Go and their catalysis in degradation of aromatic pollutants, IET Nanobiotechnology. 13 (2019) 12–17. https://doi.org/10.1049/iet-nbt.2018.5177.
DOI: 10.1049/iet-nbt.2018.5177
Google Scholar
[24]
J. Seetharamappa, S. Yellappa, F. D'Souza, Carbon Nanotubes : next generation of electronic materials, Electrochem. Soc. Interface. 15 (2006) 23–26.
DOI: 10.1149/2.f02062if
Google Scholar
[25]
A.U. Alam, M.J. Deen, Bisphenol A Electrochemical Sensor Using Graphene Oxide and β-Cyclodextrin-Functionalized Multi-Walled Carbon Nanotubes, Anal. Chem. 92 (2020) 5532–5539. https://doi.org/10.1021/ACS.ANALCHEM.0C00402/SUPPL_FILE/AC0C00402_SI_001.PDF.
DOI: 10.1021/acs.analchem.0c00402
Google Scholar
[26]
M. Endo, M.S. Strano, P.M. Ajayan, Potential Applications of Carbon Nanotubes, Top. Appl. Phys. 111 (2008) 13–62.
Google Scholar
[27]
M. Saxena, N. Sharma, R. Saxena, Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes, Surfaces and Interfaces. 21 (2020). https://doi.org/10.1016/J.SURFIN.2020.100639.
DOI: 10.1016/j.surfin.2020.100639
Google Scholar
[28]
Y. Wang, Q. He, H. Wei, H. Gu, J. Guo, A. Mohammed, M.R. Mohammad, D.S. Ahmed, Functionalization, characterization, and antibacterial activity of single wall and multi wall carbon nanotubes, IOP Conf. Ser. Mater. Sci. Eng. 757 (2020). https://doi.org/10.1088/1757-899X/757/1/012028.
DOI: 10.1088/1757-899x/757/1/012028
Google Scholar
[29]
Y.S.S. Al-Faiyz, M. Gouda, Multi-Walled Carbon Nanotubes Functionalized with Hydroxamic Acid Derivatives for the Removal of Lead from Wastewater: Kinetics, Isotherm, and Thermodynamic Studies, Polymers (Basel). 14 (2022). https://doi.org/10.3390/polym14183870.
DOI: 10.3390/polym14183870
Google Scholar
[30]
M. V. Kharlamova, M. Paukov, M.G. Burdanova, Nanotube Functionalization: Investigation, Methods and Demonstrated Applications, Materials (Basel). 15 (2022) 1–24. https://doi.org/10.3390/ma15155386.
DOI: 10.3390/ma15155386
Google Scholar
[31]
D.S. Primastari, Y. Kusumastuti, M. Handayani, Rochmadi, Functionalization of multi-walled carbon nanotube (MWCNT) with CTACe surfactant and polyethylene glycol as potential drug carrier, IOP Conf. Ser. Earth Environ. Sci. 963 (2022). https://doi.org/10.1088/1755-1315/963/1/012033.
DOI: 10.1088/1755-1315/963/1/012033
Google Scholar
[32]
V. Patel, U. Joshi, A. Joshi, A.D. Oza, C. Prakash, E. Linul, R.D.S.G. Campilho, S. Kumar, K.K. Saxena, Strength Evaluation of Functionalized MWCNT-Reinforced Polymer Nanocomposites Synthesized Using a 3D Mixing Approach, Materials (Basel). 15 (2022). https://doi.org/10.3390/ma15207263.
DOI: 10.3390/ma15207263
Google Scholar
[33]
X.L. Zhang, Y. Zhang, X.F. Yin, B.B. Du, C. Zheng, H.H. Yang, A facile approach for preparation of molecularly imprinted polymers layer on the surface of carbon nanotubes, Talanta. 105 (2013) 403–408. https://doi.org/10.1016/j.talanta.2012.10.062.
DOI: 10.1016/j.talanta.2012.10.062
Google Scholar
[34]
M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Phys. Rep. 409 (2005) 47–99. https://doi.org/10.1016/j.physrep.2004.10.006.
DOI: 10.1016/j.physrep.2004.10.006
Google Scholar