Mechanochemical Synthesis of Dendrimers as Nanocarriers: A Review

Article Preview

Abstract:

The process of mechanically activating chemical bonds usually involves applying external force. Since mechanical chemistry can be performed without solvents or with minimal amounts of solvent (catalytic quantities), it has become an imperative synthetic tool in multiple fields (e.g., physics, chemistry, and materials science) and is an attractive greener method for preparing diverse molecules. Catalysis, organic synthesis, solid-state medicinal preparation, metal complex synthesis, and many other chemistry fields have benefited from sustainable methods. The purpose of this paper is to shed light on the benefits of using mechanochemical methods to produce a pharmaceutical crystal that is composed of dendrimer nanocrystals. Consequently, we describe and examine the importance of mechanical procedures in forming dendrimers and pharmaceutical crystals in this review.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

37-46

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.A.A.-F. Ghada A.Al Bazedi, Aiman Eid Al-Rawajfeh, E.A. Mohammad R. Alrbaihat, Synthesis of nanomaterials by mechanochemistry, in Greener Synth. Nanomater. Compd., Elsevier Inc., Amsterdam, 2021: p.405–417.

DOI: 10.1016/b978-0-12-821938-6.00011-6

Google Scholar

[2] J. Noh, G.I. Peterson, T.L. Choi, Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. the Solution States, Angew. Chemie - Int. Ed. 60 (2021) 18651–18659.

DOI: 10.1002/anie.202104447

Google Scholar

[3] H. Nabipour, Y. Hu, Sustainable drug delivery systems through green nanotechnology, Elsevier Ltd., (2020).

Google Scholar

[4] S.L. James, C.J. Adams, C. Bolm, D. Braga, P. Collier, T. Frišcic, F. Grepioni, K.D.M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini, A.G. Orpen, I.P. Parkin, W.C. Shearouse, J.W. Steed, D.C. Waddell, Playing with organic radicals as building blocks for functional molecular materials, Chem. Soc. Rev. 41 (2012) 413–447.

DOI: 10.1039/c1cs15171a

Google Scholar

[5] M. Solares-Briones, G. Coyote-Dotor, J.C. Páez-Franco, M.R. Zermeño-Ortega, C.M. de la O. Contreras, D. Canseco-González, A. Avila-Sorrosa, D. Morales-Morales, J.M. Germán-Acacio, Mechanochemistry: A green approach in the preparation of pharmaceutical cocrystals, Pharmaceutics. 13 (2021) 1–49.

DOI: 10.3390/pharmaceutics13060790

Google Scholar

[6] A. Beillard, T.-X. Métro, X. Bantreil, J. Martinez, F. Lamaty, Cu (0), O 2 and mechanical forces: A saving combination for efficient production of Cu–NHC complexes, Chem. Sci. 8 (2017) 1086–1089.

DOI: 10.1039/c6sc03182j

Google Scholar

[7] M. Leonardi, M. Villacampa, J.C. Menéndez, Multicomponent mechanochemical synthesis, Chem. Sci. 9 (2018) 2042–(2064).

DOI: 10.1039/c7sc05370c

Google Scholar

[8] T. Friščić, I. Halasz, V. Štrukil, M. Eckert-Maksić, R.E. Dinnebier, Clean and efficient synthesis using mechanochemistry: coordination polymers, metal-organic frameworks, and metallodrugs, Croat. Chem. Acta. 85 (2012) 367–378.

DOI: 10.5562/cca2014

Google Scholar

[9] A.L. Garay, A. Pichon, S.L. James, Solvent-free synthesis of metal complexes, Chem. Soc. Rev. 36 (2007) 846–855.

DOI: 10.1039/b600363j

Google Scholar

[10] A.A. Gečiauskaitė, F. García, Main group mechanochemistry, Beilstein J. Org. Chem. 13 (2017) 2068–(2077).

DOI: 10.3762/bjoc.13.204

Google Scholar

[11] D. Tan, F. García, Main group mechanochemistry: from curiosity to established protocols, Chem. Soc. Rev. 48 (2019) 2274–2292.

DOI: 10.1039/c7cs00813a

Google Scholar

[12] C. Mottillo, T. Friščić, Advances in solid-state transformations of coordination bonds: From the ball mill to the aging chamber, Molecules. 22 (2017) 144.

DOI: 10.3390/molecules22010144

Google Scholar

[13] T. Stolar, K. Užarević, Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal-organic frameworks, CrystEngComm. 22 (2020) 4511–4525.

DOI: 10.1039/d0ce00091d

Google Scholar

[14] D. Chen, J. Zhao, P. Zhang, S. Dai, Mechanochemical synthesis of metal-organic frameworks, Polyhedron. 162 (2019) 59–64.

DOI: 10.1016/j.poly.2019.01.024

Google Scholar

[15] P.A. May, J.S. Moore, Polymer mechanochemistry: techniques to generate molecular force via elongational flows, Chem. Soc. Rev. 42 (2013) 7497–7506.

DOI: 10.1039/c2cs35463b

Google Scholar

[16] S. Akbulatov, R. Boulatov, Experimental polymer mechanochemistry and its interpretational frameworks, ChemPhysChem. 18 (2017) 1422–1450.

DOI: 10.1002/cphc.201601354

Google Scholar

[17] N. Willis-Fox, E. Rognin, T.A. Aljohani, R. Daly, Polymer mechanochemistry: manufacturing is now a force to be reckoned with, Chem. 4 (2018) 2499–2537.

DOI: 10.1016/j.chempr.2018.08.001

Google Scholar

[18] S.-E. Zhu, F. Li, G.-W. Wang, Mechanochemistry of fullerenes and related materials, Chem. Soc. Rev. 42 (2013) 7535–7570.

Google Scholar

[19] T. Friscic, W. Jones, Recent advances in understanding the mechanism of cocrystal formation via grinding, Cryst. Growth Des. 9 (2009) 1621–1637.

DOI: 10.1021/cg800764n

Google Scholar

[20] D. Braga, L. Maini, F. Grepioni, Mechanochemical preparation of co-crystals, Chem. Soc. Rev. 42 (2013) 7638–7648.

DOI: 10.1039/c3cs60014a

Google Scholar

[21] D. Tan, L. Loots, T. Friščić, Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs), Chem. Commun. 52 (2016) 7760–7781.

DOI: 10.1039/c6cc02015a

Google Scholar

[22] E. AlShamaileh, A.E. Al-Rawajfeh, M. Alrbaihat, Mechanochemical Synthesis of Slow-release Fertilizers: A Review, Open Agric. J. 12 (2018) 11–19.

DOI: 10.2174/1874331501812010011

Google Scholar

[23] P. Baláž, Applied Mechanochemistry, Mechanochemistry Nanosci. Miner. Eng. (2008)297–405.

Google Scholar

[24] R. Borges, V. Prevot, C. Forano, F. Wypych, Design and Kinetic Study of Sustainable Potential Slow-Release Fertilizer Obtained by Mechanochemical Activation of Clay Minerals and Potassium Monohydrogen Phosphate, Ind. Eng. Chem. Res. 56 (2017) 708–716.

DOI: 10.1021/acs.iecr.6b04378

Google Scholar

[25] A. Mikhak, A. Sohrabi, M.Z. Kassaee, M. Feizian, Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricariachamomilla L.), Ind. Crops Prod. 95 (2017) 444–452.

DOI: 10.1016/j.indcrop.2016.10.054

Google Scholar

[26] M.R. Alrbaihat, A.E. Al-rawajfeh, E. Alshamaileh, A mechanochemical preparation , properties and kinetic study of kaolin – N , P fertilizers for agricultural applications **, 2021 (2021) 265–271.

DOI: 10.1515/jmbm-2021-0028

Google Scholar

[27] M. Alrbaihat, A Review of Size Reduction techniques Using Mechanochemistry Approach, Egypt. J. Chem. 65 (2021) 551–558.

Google Scholar

[28] L. Takacs, Mechanochemistry and the Other Branches of Chemistry : Similarities and Di erences, 121 (2012).

Google Scholar

[29] B. Nasiri-tabrizi, S. Baradaran, E. Zalnezhad, W.J. Basirun, Applications of electron microscopy in mechanochemistry, (2014) 791–802.

Google Scholar

[30] A.M. Klibanov, G.P. Samokhin, K. Martinek, I. V Berezin, Enzymatic mechanochemistry: a new approach to studying the mechanism of enzyme action, Biochim. Biophys. Acta (BBA)-Enzymology. 438 (1976) 1–12.

DOI: 10.1016/0005-2744(76)90218-7

Google Scholar

[31] C.E. Diesendruck, G.I. Peterson, H.J. Kulik, J.A. Kaitz, B.D. Mar, P.A. May, S.R. White, T.J. Martínez, A.J. Boydston, J.S. Moore, Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer, Nat. Chem. 6 (2014) 623–628.

DOI: 10.1038/nchem.1938

Google Scholar

[32] J.M. Lenhardt, M.T. Ong, R. Choe, C.R. Evenhuis, T.J. Martinez, S.L. Craig, Trapping a diradical transition state by mechanochemical polymer extension, Science (80-. ). 329 (2010) 1057–1060.

DOI: 10.1126/science.1193412

Google Scholar

[33] A.G. Tennyson, K.M. Wiggins, C.W. Bielawski, Mechanical activation of catalysts for C− C bond forming and anionic polymerization reactions from a single macromolecular reagent, J. Am. Chem. Soc. 132 (2010) 16631–16636.

DOI: 10.1021/ja107620y

Google Scholar

[34] A. Piermattei, S. Karthikeyan, R.P. Sijbesma, Activating catalysts with mechanical force, Nat. Chem. 1 (2009) 133–137.

DOI: 10.1038/nchem.167

Google Scholar

[35] Y. Li, A. Nese, N. V Lebedeva, T. Davis, K. Matyjaszewski, S.S. Sheiko, Molecular tensile machines: intrinsic acceleration of disulfide reduction by dithiothreitol, J. Am. Chem. Soc. 133 (2011) 17479–17484.

DOI: 10.1021/ja207491r

Google Scholar

[36] R.J. Camp, M. Liles, J. Beale, N. Saeidi, B.P. Flynn, E. Moore, S.K. Murthy, J.W. Ruberti, Molecular mechanochemistry: low force switch slows enzymatic cleavage of human type I collagen monomer, J. Am. Chem. Soc. 133 (2011) 4073–4078.

DOI: 10.1021/ja110098b

Google Scholar

[37] A.P. Wiita, S.R.K. Ainavarapu, H.H. Huang, J.M. Fernandez, Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques, Proc. Natl. Acad. Sci. 103 (2006) 7222–7227.

DOI: 10.1073/pnas.0511035103

Google Scholar

[38] K. Visscher, M.J. Schnitzer, S.M. Block, Single kinesin molecules studied with a molecular force clamp, Nature. 400 (1999) 184–189.

DOI: 10.1038/22146

Google Scholar

[39] Y.I. Golovin, S.L. Gribanovskii, N.L. Klyachko, A. V Kabanov, Nanomechanical control of the activity of enzymes immobilized on single-domain magnetic nanoparticles, Tech. Phys. 59 (2014) 932–935.

DOI: 10.1134/s1063784214060085

Google Scholar

[40] K.M. Wiggins, J.N. Brantley, C.W. Bielawski, Polymer mechanochemistry: force enabled transformations, (2012).

Google Scholar

[41] D. Bensimon, Force: a new structural control parameter?, Structure. 4 (1996) 885–889.

DOI: 10.1016/s0969-2126(96)00095-0

Google Scholar

[42] A. Santos, F. Veiga, A. Figueiras, Dendrimers as pharmaceutical excipients: Synthesis, properties, toxicity and biomedical applications, (2020).

DOI: 10.3390/ma13010065

Google Scholar

[43] R.A. Cross, A. McAinsh, Prime movers: the mechanochemistry of mitotic kinesins, Nat. Rev. Mol. Cell Biol. 15 (2014) 257–271.

DOI: 10.1038/nrm3768

Google Scholar

[44] K.S. Bloom, Beyond the code: the mechanical properties of DNA as they relate to mitosis, Chromosoma. 117 (2008) 103–110.

DOI: 10.1007/s00412-007-0138-0

Google Scholar

[45] A.M. Gordon, E. Homsher, M. Regnier, Regulation of contraction in striated muscle, Physiol. Rev. 80 (2000) 853–924.

DOI: 10.1152/physrev.2000.80.2.853

Google Scholar

[46] P. Baláž, Mechanochemistry in Minerals Engineering, Mechanochemistry Nanosci. Miner. Eng. (2008) 257–296.

DOI: 10.1007/978-3-540-74855-7_5

Google Scholar

[47] V. V. Boldyrev, Topochemistry of thermal decompositions of solids, Thermochim. Acta. 100 (1986) 315–338.

DOI: 10.1016/0040-6031(86)87063-0

Google Scholar

[48] Y. Chen, M. Bibole, R. Le Hazif, G. Martin, Ball-milling-induced amorphization in NixZry compounds: A parametric study, Phys. Rev. B. 48 (1993) 14–21.

Google Scholar

[49] V. Klika, F. Maršík, Coupling effect between mechanical loading and chemical reactions, J. Phys. Chem. B. 113 (2009) 14689–14697.

DOI: 10.1021/jp903054y

Google Scholar

[50] D.L. Zhang, Processing of advanced materials using high-energy mechanical milling, Prog. Mater. Sci. 49 (2004) 537–560.

Google Scholar

[51] D. Hasa, W. Jones, Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide, Adv. Drug Deliv. Rev. 117 (2017) 147–161.

DOI: 10.1016/j.addr.2017.05.001

Google Scholar

[52] D. Tan, L. Loots, T. Friščić, Towards medicinal mechanochemistry: Evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs), Chem. Commun. 52 (2016) 7760–7781.

DOI: 10.1039/c6cc02015a

Google Scholar

[53] D. Douroumis, S.A. Ross, A. Nokhodchi, Advanced methodologies for cocrystal synthesis, Adv. Drug Deliv. Rev. 117 (2017) 178–195.

DOI: 10.1016/j.addr.2017.07.008

Google Scholar

[54] R.B. Chavan, B. Yadav, A. Lodagekar, N.R. Shastri, Multicomponent Solid Forms: A New Boost to Pharmaceuticals, in: Multifunct. Nanocarriers Contemp. Healthc. Appl., IGI Global, 2018: p.273–300.

DOI: 10.4018/978-1-5225-4781-5.ch010

Google Scholar

[55] S. Datta, D.J.W. Grant, Crystal structures of drugs: Advances in determination, prediction and engineering, Nat. Rev. Drug Discov. 3 (2004) 42–57.

DOI: 10.1038/nrd1280

Google Scholar

[56] X. Zhao, Y. Wei, Z. Wang, B. Zhang, F. Chen, P. Zhang, Mechanochemistry in Thermomechanical Processing of Foods : Kinetic Aspects, 76 (2011).

DOI: 10.1111/j.1750-3841.2011.02301.x

Google Scholar

[57] A.I. Aleksandrov, V.G. Shevchenko, A.N. Tarasenkov, N.M. Surin, G. V. Cherkaev, I.Y. Metlenkova, E.A. Svidchenko, V.G. Krasovsky, A.A. Dubinsky, E.N. Degtyarev, Mechanochemical synthesis and structure of a nanocluster {organosilicon dendrimer - Copper dimer}, J. Organomet. Chem. 950 (2021) 121976.

DOI: 10.1016/j.jorganchem.2021.121976

Google Scholar

[58] R. Mohammadinejad, G.A. Mansoori, Large-scale production/biosynthesis of biogenic nanoparticles, (2020).

Google Scholar

[59] M.A. Ghanem, A. Basu, R. Behrou, N. Boechler, A.J. Boydston, S.L. Craig, Y. Lin, B.E. Lynde, A. Nelson, H. Shen, D.W. Storti, The role of polymer mechanochemistry in responsive materials and additive manufacturing, Nat. Rev. Mater. 6 (2021) 84–98.

DOI: 10.1038/s41578-020-00249-w

Google Scholar

[60] J. Li, C. Nagamani, J.S. Moore, Polymer mechanochemistry: from destructive to productive, Acc. Chem. Res. 48 (2015) 2181–2190.

DOI: 10.1021/acs.accounts.5b00184

Google Scholar

[61] J.F. Patrick, M.J. Robb, N.R. Sottos, J.S. Moore, S.R. White, Polymers with autonomous life-cycle control, Nature. 540 (2016) 363–370.

DOI: 10.1038/nature21002

Google Scholar

[62] B.H. Bowser, S.L. Craig, Empowering mechanochemistry with multi-mechanophore polymer architectures, Polym. Chem. 9 (2018) 3583–3593.

DOI: 10.1039/c8py00720a

Google Scholar

[63] J. Wang, T.B. Kouznetsova, Z. Niu, M.T. Ong, H.M. Klukovich, A.L. Rheingold, T.J. Martinez, S.L. Craig, Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry, Nat. Chem. 7 (2015) 323–327.

DOI: 10.1038/nchem.2185

Google Scholar

[64] K. Wei, Z. Gao, H. Liu, X. Wu, F. Wang, H. Xu, Mechanical activation of platinum–acetylide complex for olefin hydrosilylation, ACS Macro Lett. 6 (2017) 1146–1150.

DOI: 10.1021/acsmacrolett.7b00487

Google Scholar

[65] Z. Wang, Z. Ma, Y. Wang, Z. Xu, Y. Luo, Y. Wei, X. Jia, A novel mechanochromic and photochromic polymer film: when rhodamine joins polyurethane, Adv. Mater. 27 (2015) 6469–6474.

DOI: 10.1002/adma.201503424

Google Scholar

[66] G.A. Filonenko, J.A.M. Lugger, C. Liu, E.P.A. van Heeswijk, M.M.R.M. Hendrix, M. Weber, C. Müller, E.J.M. Hensen, R.P. Sijbesma, E.A. Pidko, Tracking local mechanical impact in heterogeneous polymers with direct optical imaging, Angew. Chemie Int. Ed. 57 (2018) 16385–16390.

DOI: 10.1002/anie.201809108

Google Scholar

[67] Y. Sagara, M. Karman, E. Verde-Sesto, K. Matsuo, Y. Kim, N. Tamaoki, C. Weder, Rotaxanes as mechanochromic fluorescent force transducers in polymers, J. Am. Chem. Soc. 140 (2018) 1584–1587.

DOI: 10.1021/jacs.7b12405

Google Scholar

[68] H. Sakai, T. Sumi, D. Aoki, R. Goseki, H. Otsuka, Thermally stable radical-type mechanochromic polymers based on difluorenylsuccinonitrile, ACS Macro Lett. 7 (2018) 1359–1363.

DOI: 10.1021/acsmacrolett.8b00755

Google Scholar

[69] H. Zhang, F. Gao, X. Cao, Y. Li, Y. Xu, W. Weng, R. Boulatov, Mechanochromism and mechanical‐force‐triggered cross‐linking from a single reactive moiety incorporated into polymer chains, Angew. Chemie. 128 (2016) 3092–3096.

DOI: 10.1002/ange.201510171

Google Scholar

[70] M.B. Gordon, S. Wang, G.A. Knappe, N.J. Wagner, T.H. Epps, C.J. Kloxin, Force-induced cleavage of a labile bond for enhanced mechanochemical crosslinking, Polym. Chem. 8 (2017) 6485–6489.

DOI: 10.1039/c7py01431g

Google Scholar

[71] T. Matsuda, R. Kawakami, R. Namba, T. Nakajima, J.P. Gong, Mechanoresponsive self-growing hydrogels inspired by muscle training, Science (80-. ). 363 (2019) 504–508.

DOI: 10.1126/science.aau9533

Google Scholar

[72] T. Watabe, D. Aoki, H. Otsuka, Enhancement of Mechanophore Activation in Mechanochromic Dendrimers by Functionalization of Their Surface, Macromolecules. 54 (2021) 1725–1731.

DOI: 10.1021/acs.macromol.0c02497

Google Scholar

[73] A. Parat, D. Felder-Flesch, General introduction on dendrimers, classical versus accelerated syntheses and characterizations, in: Dendrimers in Nanomedicine, Jenny Stanford Publishing, 2016: p.1–22.

DOI: 10.1201/9781315364513-2

Google Scholar

[74] I.M. Klein, C.C. Husic, D.P. Kovács, N.J. Choquette, M.J. Robb, Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry, J. Am. Chem. Soc. 142 (2020) 16364–16381.

DOI: 10.1021/jacs.0c06868

Google Scholar

[75] M. Sayedul Islam, M. Wahab Khan, Synthesis of Dendrimer Assisted Co-Pd Bimetallic Nanoparticles and Catalytic Activity for Suzuki–Miyaura Coupling Reactions, Am. J. Nanosci. 5 (2019) 1.

DOI: 10.11648/j.ajn.20190501.11

Google Scholar

[76] P. Arshad, P. Dineshkumar, K. Naga Jyothi, M. Karthik, G. Saravanan, Dendrimers as a Novel Carrier in Anti-HIV Therapy, J. Drug Deliv. Ther. 9 (2019) 195–200.

DOI: 10.22270/jddt.v9i5-s.3650

Google Scholar

[77] T. Watabe, K. Ishizuki, D. Aoki, H. Otsuka, Mechanochromic dendrimers: The relationship between primary structure and mechanochromic properties in the bulk, Chem. Commun. 55 (2019) 6831–6834.

DOI: 10.1039/c9cc03011e

Google Scholar

[78] E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi, S.W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Dendrimers: Synthesis, applications, and properties, Nanoscale Res. Lett. 9 (2014) 1–10.

DOI: 10.1186/1556-276x-9-247

Google Scholar

[79] A.S. Chauhan, Dendrimers for Drug Delivery, Molecules. 23 (2018).

Google Scholar

[80] A. Chauhan, S. Svenson, L. Reyna, D. Tomalia, Solubility enhancement propensity of PAMAM nanoconstructs, Mater. Matters Nanomater. 2 (2007) 24–26.

Google Scholar

[81] H. Kulhari, D. Pooja, M.K. Singh, A.S. Chauhan, Optimization of carboxylate-terminated poly (amidoamine) dendrimer-mediated cisplatin formulation, Drug Dev. Ind. Pharm. 41 (2015) 232–238.

DOI: 10.3109/03639045.2013.858735

Google Scholar

[82] F. García-Álvarez, M. Martínez-García, Click reaction in the synthesis of dendrimer drug-delivery systems, Curr. Med. Chem. (2022).

DOI: 10.2174/0929867328666211027124724

Google Scholar

[83] D.A. Davis, A. Hamilton, J. Yang, L.D. Cremar, D. Van Gough, S.L. Potisek, M.T. Ong, P. V Braun, T.J. Martínez, S.R. White, Force-induced activation of covalent bonds in mechanoresponsive polymeric materials, Nature. 459 (2009) 68–72.

DOI: 10.1038/nature07970

Google Scholar

[84] K. Imato, A. Irie, T. Kosuge, T. Ohishi, M. Nishihara, A. Takahara, H. Otsuka, Mechanophores with a reversible radical system and freezing‐induced mechanochemistry in polymer solutions and gels, Angew. Chemie. 127 (2015) 6266–6270.

DOI: 10.1002/ange.201412413

Google Scholar

[85] M.E. McFadden, M.J. Robb, Force-dependent multicolor mechanochromism from a single mechanophore, J. Am. Chem. Soc. 141 (2019) 11388–11392.

DOI: 10.1021/jacs.9b05280

Google Scholar

[86] C.E. Diesendruck, B.D. Steinberg, N. Sugai, M.N. Silberstein, N.R. Sottos, S.R. White, P. V Braun, J.S. Moore, Proton-coupled mechanochemical transduction: a mechanogenerated acid, J. Am. Chem. Soc. 134 (2012) 12446–12449.

DOI: 10.1021/ja305645x

Google Scholar

[87] X. Hu, T. Zeng, C.C. Husic, M.J. Robb, Mechanically triggered small molecule release from a masked furfuryl carbonate, J. Am. Chem. Soc. 141 (2019) 15018–15023.

DOI: 10.1021/jacs.9b08663

Google Scholar

[88] Z. Chen, J.A.M. Mercer, X. Zhu, J.A.H. Romaniuk, R. Pfattner, L. Cegelski, T.J. Martinez, N.Z. Burns, Y. Xia, Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene, Science (80-. ). 357 (2017) 475–479.

DOI: 10.1126/science.aan2797

Google Scholar

[89] P. Michael, W.H. Binder, A mechanochemically triggered click, catalyst, Angew. Chemie. 127 (2015) 14124–14128.

DOI: 10.1002/ange.201505678

Google Scholar