Mechanical Properties of 202 Austenitic Stainless Steel Depending on Rolling Temperature and Rolling Degree

Article Preview

Abstract:

In this study, high-cost Cr and Ni components of 202 austenitic stainless steel were reduced, low-cost Mn was added, and the amount of martensite and the mechanical properties were evaluated according to the rolling temperature and rolling degree. Part of the austenite was deformed by rolling into α′-martensite. As the rolling degree was increased, more martensite was generated; and at the same rolling degree, as the rolling temperature decreased, more martensite was generated. Up to a rolling degree of 33 %, the amount of martensite rapidly increased; thereafter, it gradually increased. In particular, the amount of martensite at a rolling temperature of-196 °C was similar to that after the rolling degree of 33 %. As the rolling temperature decreased and the rolling degree increased, both the Vickers hardness and tensile (yield) strength increased, while the elongation rapidly decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-106

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.M. Cobb, The History of Stainless Steel, Materials Park, OH: ASM International, (2010).

Google Scholar

[2] D. Peckner, I.M. Bernstein, Handbook of Stainless Steels, McGraw Hill, (1977).

Google Scholar

[3] P. Lacombe, B. Baroux, G. Beranger, Les Aciers Inoxydables, Les Editions de Physique, (1990).

Google Scholar

[4] K. Tomimura, S. Takaki, S. Tanimoto, Y. Tokunaga, Optimal Chemical Composition in Fe-Cr-Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite, ISIJ International 31. (1991) 721-717.

DOI: 10.2355/isijinternational.31.721

Google Scholar

[5] K. Tomimura, S. Takaki, Y. Tokunaga, Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels, ISIJ International. 31 (1991) 1431-1437.

DOI: 10.2355/isijinternational.31.1431

Google Scholar

[6] S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyröläinen, Hall–Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel, Metallurgical and Materials Transactions A. 38 (2007) 1202-1210.

DOI: 10.1007/s11661-007-9143-4

Google Scholar

[7] R. Misra, B. Kumar, M. Somani, P. Karjalainen, Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels, Scripta Materialia. 59 (2008) 79-82.

DOI: 10.1016/j.scriptamat.2008.02.028

Google Scholar

[8] F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati, R. Surkialiabad, Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process, Materials Science and Engineering A. 527 (2010) 7334-7339.

DOI: 10.1016/j.msea.2010.08.002

Google Scholar

[9] A.S. Hamada, A.P. Kisko, P. Sahu, L.P. Karjalainen, Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing, Materials Science and Engineering A. 628 (2015) 154-159.

DOI: 10.1016/j.msea.2015.01.042

Google Scholar

[10] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, Grain refinement under multiple warm deformation in 304 type austenitic stainless steel, ISIJ International. 39 (1999) 592-599.

DOI: 10.2355/isijinternational.39.592

Google Scholar

[11] A. Di Schino, J.M. Kenny, Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel, Materials Letters. 57 (2003) 1830-1834.

DOI: 10.1016/s0167-577x(02)01076-5

Google Scholar

[12] N. Nakada, N. Hirakawa, T. Tsuchiyama, S. Takaki, Grain refinement of nickel-free high nitrogen austenitic stainless steel by reversion of eutectoid structure, Scripta Materialia. 57 (2007) 153-156.

DOI: 10.1016/j.scriptamat.2007.03.022

Google Scholar

[13] M. Naghizadeh, H. Mirzadeh, Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth, Metallurgical and Materials Transactions A. 47 (2016) 4210-4216.

DOI: 10.1007/s11661-016-3589-1

Google Scholar

[14] Y. Mine, N. Horita, Z. Horita, K. Takashima, Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel, Int. J. Hydrogen Energy. 42 (2017) 15415-15425.

DOI: 10.1016/j.ijhydene.2017.04.249

Google Scholar

[15] A. DI Schino, I. Salvatori, J. M. Kenny, Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel, J. Materials Science. 37 (2002) 4561-4565.

DOI: 10.1023/a:1020631912685

Google Scholar

[16] M. Shirdel, H. Mirzadeh, M.H. Parsa, Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect, Materials Characterization. 103 (2015) 150-161.

DOI: 10.1016/j.matchar.2015.03.031

Google Scholar

[17] M. Naghizadeh, H. Mirzadeh, Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel, Metallurgical and Materials Transactions A. 49 (2018) 2248-2256.

DOI: 10.1007/s11661-018-4583-6

Google Scholar

[18] M. Moallemi, A. Najafizadeh, A. Kermanpur, A. Rezaee, Effect of reversion annealing on the formation of nano/ultrafine grained structure in 201 austenitic stainless steel, Materials Science and Engineering A. 530 (2011) 378-381.

DOI: 10.1016/j.msea.2011.09.099

Google Scholar

[19] J.W. Fu, Y.S. Yang, J.J. Guo, J.C. Ma, W.H. Tong, Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification, Journal of Crystal Growth. 311 (2008) 132-136.

DOI: 10.1016/j.jcrysgro.2008.10.021

Google Scholar

[20] P. Hedström, T.S. Han, U. Lienert, J. Almer, M. Odén, Load partitioning between single bulk grains in a two-phase duplex stainless steel during tensile loading, Acta Materialia. 58 (2010) 734-744.

DOI: 10.1016/j.actamat.2009.09.053

Google Scholar

[21] Y.H. Kim, J.H. Kim, T.H. Hwang, J.Y. Lee, C.Y. Kang, Effect of austenite on mechanical properties in high manganese austenitic stainless steel with two phase of martensite and austenite, Metals and Materials International. 21 (2015) 485-489.

DOI: 10.1007/s12540-015-4480-0

Google Scholar

[22] X.F. Fang, W. Dahl, Strain hardening and transformation mechanism of deformation-induced martensite transformation in metastable austenitic stainless steels, Materials Science and Engineering A. 141 (1991) 189-198.

DOI: 10.1016/0921-5093(91)90769-j

Google Scholar

[23] G. Tan, Y. Liu, Comparative study of deformation-induced martensite stabilisation via martensite reorientation and stress-induced martensitic transformation in NiTi, Intermetallics. 12 (2004) 373-381.

DOI: 10.1016/j.intermet.2003.11.008

Google Scholar

[24] A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel, Materials Science and Engineering A. 486 (2008) 283-286.

DOI: 10.1016/j.msea.2007.09.005

Google Scholar