[1]
H.M. Cobb, The History of Stainless Steel, Materials Park, OH: ASM International, (2010).
Google Scholar
[2]
D. Peckner, I.M. Bernstein, Handbook of Stainless Steels, McGraw Hill, (1977).
Google Scholar
[3]
P. Lacombe, B. Baroux, G. Beranger, Les Aciers Inoxydables, Les Editions de Physique, (1990).
Google Scholar
[4]
K. Tomimura, S. Takaki, S. Tanimoto, Y. Tokunaga, Optimal Chemical Composition in Fe-Cr-Ni Alloys for Ultra Grain Refining by Reversion from Deformation Induced Martensite, ISIJ International 31. (1991) 721-717.
DOI: 10.2355/isijinternational.31.721
Google Scholar
[5]
K. Tomimura, S. Takaki, Y. Tokunaga, Reversion Mechanism from Deformation Induced Martensite to Austenite in Metastable Austenitic Stainless Steels, ISIJ International. 31 (1991) 1431-1437.
DOI: 10.2355/isijinternational.31.1431
Google Scholar
[6]
S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyröläinen, Hall–Petch Behavior in Ultra-Fine-Grained AISI 301LN Stainless Steel, Metallurgical and Materials Transactions A. 38 (2007) 1202-1210.
DOI: 10.1007/s11661-007-9143-4
Google Scholar
[7]
R. Misra, B. Kumar, M. Somani, P. Karjalainen, Deformation processes during tensile straining of ultrafine/nanograined structures formed by reversion in metastable austenitic steels, Scripta Materialia. 59 (2008) 79-82.
DOI: 10.1016/j.scriptamat.2008.02.028
Google Scholar
[8]
F. Forouzan, A. Najafizadeh, A. Kermanpur, A. Hedayati, R. Surkialiabad, Production of nano/submicron grained AISI 304L stainless steel through the martensite reversion process, Materials Science and Engineering A. 527 (2010) 7334-7339.
DOI: 10.1016/j.msea.2010.08.002
Google Scholar
[9]
A.S. Hamada, A.P. Kisko, P. Sahu, L.P. Karjalainen, Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing, Materials Science and Engineering A. 628 (2015) 154-159.
DOI: 10.1016/j.msea.2015.01.042
Google Scholar
[10]
A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, Grain refinement under multiple warm deformation in 304 type austenitic stainless steel, ISIJ International. 39 (1999) 592-599.
DOI: 10.2355/isijinternational.39.592
Google Scholar
[11]
A. Di Schino, J.M. Kenny, Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel, Materials Letters. 57 (2003) 1830-1834.
DOI: 10.1016/s0167-577x(02)01076-5
Google Scholar
[12]
N. Nakada, N. Hirakawa, T. Tsuchiyama, S. Takaki, Grain refinement of nickel-free high nitrogen austenitic stainless steel by reversion of eutectoid structure, Scripta Materialia. 57 (2007) 153-156.
DOI: 10.1016/j.scriptamat.2007.03.022
Google Scholar
[13]
M. Naghizadeh, H. Mirzadeh, Microstructural Evolutions During Annealing of Plastically Deformed AISI 304 Austenitic Stainless Steel: Martensite Reversion, Grain Refinement, Recrystallization, and Grain Growth, Metallurgical and Materials Transactions A. 47 (2016) 4210-4216.
DOI: 10.1007/s11661-016-3589-1
Google Scholar
[14]
Y. Mine, N. Horita, Z. Horita, K. Takashima, Effect of ultrafine grain refinement on hydrogen embrittlement of metastable austenitic stainless steel, Int. J. Hydrogen Energy. 42 (2017) 15415-15425.
DOI: 10.1016/j.ijhydene.2017.04.249
Google Scholar
[15]
A. DI Schino, I. Salvatori, J. M. Kenny, Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel, J. Materials Science. 37 (2002) 4561-4565.
DOI: 10.1023/a:1020631912685
Google Scholar
[16]
M. Shirdel, H. Mirzadeh, M.H. Parsa, Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect, Materials Characterization. 103 (2015) 150-161.
DOI: 10.1016/j.matchar.2015.03.031
Google Scholar
[17]
M. Naghizadeh, H. Mirzadeh, Microstructural evolutions during reversion annealing of cold-rolled AISI 316 austenitic stainless steel, Metallurgical and Materials Transactions A. 49 (2018) 2248-2256.
DOI: 10.1007/s11661-018-4583-6
Google Scholar
[18]
M. Moallemi, A. Najafizadeh, A. Kermanpur, A. Rezaee, Effect of reversion annealing on the formation of nano/ultrafine grained structure in 201 austenitic stainless steel, Materials Science and Engineering A. 530 (2011) 378-381.
DOI: 10.1016/j.msea.2011.09.099
Google Scholar
[19]
J.W. Fu, Y.S. Yang, J.J. Guo, J.C. Ma, W.H. Tong, Formation of a two-phase microstructure in Fe–Cr–Ni alloy during directional solidification, Journal of Crystal Growth. 311 (2008) 132-136.
DOI: 10.1016/j.jcrysgro.2008.10.021
Google Scholar
[20]
P. Hedström, T.S. Han, U. Lienert, J. Almer, M. Odén, Load partitioning between single bulk grains in a two-phase duplex stainless steel during tensile loading, Acta Materialia. 58 (2010) 734-744.
DOI: 10.1016/j.actamat.2009.09.053
Google Scholar
[21]
Y.H. Kim, J.H. Kim, T.H. Hwang, J.Y. Lee, C.Y. Kang, Effect of austenite on mechanical properties in high manganese austenitic stainless steel with two phase of martensite and austenite, Metals and Materials International. 21 (2015) 485-489.
DOI: 10.1007/s12540-015-4480-0
Google Scholar
[22]
X.F. Fang, W. Dahl, Strain hardening and transformation mechanism of deformation-induced martensite transformation in metastable austenitic stainless steels, Materials Science and Engineering A. 141 (1991) 189-198.
DOI: 10.1016/0921-5093(91)90769-j
Google Scholar
[23]
G. Tan, Y. Liu, Comparative study of deformation-induced martensite stabilisation via martensite reorientation and stress-induced martensitic transformation in NiTi, Intermetallics. 12 (2004) 373-381.
DOI: 10.1016/j.intermet.2003.11.008
Google Scholar
[24]
A. Das, S. Sivaprasad, M. Ghosh, P.C. Chakraborti, S. Tarafder, Morphologies and characteristics of deformation induced martensite during tensile deformation of 304 LN stainless steel, Materials Science and Engineering A. 486 (2008) 283-286.
DOI: 10.1016/j.msea.2007.09.005
Google Scholar