[1]
Wiktor, V., & Jonkers, H. M., Quantification of crack-healing in novel bacteria-based self-healing concrete, Cement and Concrete Composites. 33 (2011) 763-770.
DOI: 10.1016/j.cemconcomp.2011.03.012
Google Scholar
[2]
Hossain, M., Sultana, R., Patwary, M. M., Khunga, N., Sharma, P., & Shaker, S. J., Self-healing concrete for sustainable buildings, A review. Environmental Chemistry Letters. (2022) 1-9.
DOI: 10.1007/s10311-021-01375-9
Google Scholar
[3]
Luo, M., Qian, C. X., & Li, R. Y., Factors affecting crack repairing capacity of bacteria-based self-healing concrete, Construction and Building Materials. 87 (2015) 1-7.
DOI: 10.1016/j.conbuildmat.2015.03.117
Google Scholar
[4]
Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E., Application of bacteria as self-healing agent for the development of sustainable concrete, Ecological Engineering. 36 (2010) 230-235.
DOI: 10.1016/j.ecoleng.2008.12.036
Google Scholar
[5]
Khaliq, W., & Ehsan, M. B., Crack healing in concrete using various bio influenced self-healing techniques, Construction and Building Materials. 102 (2016) 349-357.
DOI: 10.1016/j.conbuildmat.2015.11.006
Google Scholar
[6]
Zhong, W., & Yao, W., Influence of damage degree on self-healing of concrete, Construction and building Materials. 22 (2008) 1137-1142.
DOI: 10.1016/j.conbuildmat.2007.02.006
Google Scholar
[7]
Wang, J., Van Tittelboom, K., De Belie, N., & Verstraete, W., Use of silica gel or polyurethane immobilized bacteria for self-healing concrete, Construction and Building Materials. 26 (2012) 532-540.
DOI: 10.1016/j.conbuildmat.2011.06.054
Google Scholar
[8]
Tziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E., Performance requirements to ensure the efficiency of bacteria-based self-healing concrete, In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Berkeley. (2016).
DOI: 10.21012/fc9.148
Google Scholar
[9]
Breugel, K. V., Is there a market for self-healing cement-based materials, In proceedings of the first international conference on self-healing materials (2007) 1-9.
Google Scholar
[10]
Vermeer, C. M., Rossi, E., Tamis, J., Jonkers, H. M., & Kleerebezem, R., From waste to self-healing concrete: A proof-of-concept of a new application for polyhydroxyalkanoate, Resources, Conservation and Recycling. 164 (2021).
DOI: 10.1016/j.resconrec.2020.105206
Google Scholar
[11]
Edvardsen, C., Water permeability and autogenous healing of cracks in concrete, Innovation in Concrete Structures: Design and Construction. (1999) 473-487.
Google Scholar
[12]
Aldea, C. M., Song, W. J., Popovics, J. S., & Shah, S. P., Extent of healing of cracked normal strength concrete, Journal of Materials in Civil Engineering. 12 (2000) 92-96.
DOI: 10.1061/(asce)0899-1561(2000)12:1(92)
Google Scholar
[13]
Jacobsen, S., & Sellevold, E. J., Self-healing of high strength concrete after deterioration by freeze/thaw, Cement and Concrete Research. 26 (1996) 55-62.
DOI: 10.1016/0008-8846(95)00179-4
Google Scholar
[14]
Gavimath, C. C., Mali, B. M., Hooli, V. R., Mallpur, J. D., Patil, A. B., Gaddi, D., ... & Ravishankera, B. E., Potential application of bacteria to improve the strength of cement concrete, International Journal of Advanced Biotechnology and Research. 3 (2012) 541-544.
Google Scholar
[15]
Bang, S. S., Galinat, J. K., & Ramakrishnan, V., Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii, Enzyme and Microbial Technology. 28 (2001) 404-409.
DOI: 10.1016/s0141-0229(00)00348-3
Google Scholar
[16]
Achal, V., Mukerjee, A., & Reddy, M. S., Biogenic treatment improves the durability and remediates the cracks of concrete structures, Construction and Building Materials. 48 (2013) 1-5.
DOI: 10.1016/j.conbuildmat.2013.06.061
Google Scholar
[17]
Xu, J., & Yao, W., Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent, Cement and Concrete Research. 64 (2014) 1-10.
DOI: 10.1016/j.cemconres.2014.06.003
Google Scholar
[18]
Huynh, N. N. T., Phuong, N. M., Toan, N. P. A., & Son, N. K., Bacillus subtilis HU58 Immobilized in micropores of diatomite for using in self-healing concrete, Procedia Engineering. 171 (2017) 598-605.
DOI: 10.1016/j.proeng.2017.01.385
Google Scholar
[19]
Su, Y., Zheng, T., & Qian, C., Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete, Construction and Building Materials. 273 (2021).
DOI: 10.1016/j.conbuildmat.2020.121740
Google Scholar
[20]
Siddique, R., & Chahal, N. K., Effect of ureolytic bacteria on concrete properties, Construction and building Materials. 25 (2011) 3791-3801.
DOI: 10.1016/j.conbuildmat.2011.04.010
Google Scholar
[21]
Chahal, N., Siddique, R., & Rajor, A., Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete, Construction and Building Materials. 28 (2012) 351-356.
DOI: 10.1016/j.conbuildmat.2011.07.042
Google Scholar
[22]
Homma, D., Mihashi, H., & Nishiwaki, T., Self-healing capability of fibre reinforced cementitious composites, Journal of Advanced Concrete Technology. 7 (2009) 217-228.
DOI: 10.3151/jact.7.217
Google Scholar
[23]
Williams, S. L., Kirisits, M. J., & Ferron, R. D., Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete, Construction and Building Materials. 139 (2017) 611-618.
DOI: 10.1016/j.conbuildmat.2016.09.155
Google Scholar
[24]
Stocks-Fischer, S., Galinat, J. K., & Bang, S. S., Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. 31 (1999) 1563-1571.
DOI: 10.1016/s0038-0717(99)00082-6
Google Scholar
[25]
Dick, J., De Windt, W., De Graef, B., Saveyn, H., Van der Meeren, P., De Belie, N., & Verstraete, W., Bio-deposition of a calcium carbonate layer on degraded limestone by bacillus species, Biodegradation. 17 (2006) 357-367.
DOI: 10.1007/s10532-005-9006-x
Google Scholar
[26]
Mitchell, A. C., Dideriksen, K., Spangler, L. H., Cunningham, A. B., & Gerlach, R., Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping, Environmental Science & Technology. 44 (2010) 270-5276.
DOI: 10.1021/es903270w
Google Scholar
[27]
Abo-El-Enein, S.A., Ali, A.H., Talkhan, F.N., Abdel-Gawwad, H.A., Application of microbial biocementation to improve the physico-mechanical properties of cement mortar, HBRC Journal. 9 (2013) 36–40.
DOI: 10.1016/j.hbrcj.2012.10.004
Google Scholar
[28]
Maheswaran, S., Dasuru, S. S., Murthy, A. R. C., Bhuvaneshwari, B., Kumar, V. R., Palani, G. S., ... & Sandhya, S., Strength improvement studies using new type wild strain Bacillus cereus on cement mortar, Current Science. 106 (2014) 50-57.
Google Scholar
[29]
Vempada, S. R., Reddy, S. S. P., Rao, M. S., & Sasikala, C. I., Strength enhancement of cement mortar using microorganisms-an experimental study, International Journal of Earth Sciences and Engineering. 4 (2011) 933-936.
Google Scholar
[30]
Yang, Z., Hollar, J., He, X., & Shi, X., Laboratory assessment of a self-healing cementitious composite, Transportation Research Record. 2142 (2010) 9-17.
DOI: 10.3141/2142-02
Google Scholar
[31]
Feiteira, J., Gruyaert, E., & De Belie, N., Self-healing of moving cracks in concrete by means of encapsulated polymer precursors, Construction and Building Materials. 102 (2016) 671-678.
DOI: 10.1016/j.conbuildmat.2015.10.192
Google Scholar
[32]
Gruyaert, E., Debbaut, B., Snoeck, D., Díaz, P., Arizo, A., Tziviloglou, E., ... & De Belie, N., Self-healing mortar with pH-sensitive superabsorbent polymers: testing of the sealing efficiency by water flow tests, Smart Materials and Structures. 25 (2016) 1-11.
DOI: 10.1088/0964-1726/25/8/084007
Google Scholar
[33]
Kanellopoulos, A., Qureshi, T. S., & Al-Tabbaa, A., Glass encapsulated minerals for self-healing in cement-based composites, Construction and Building Materials. 98 (2015) 780-791.
DOI: 10.1016/j.conbuildmat.2015.08.127
Google Scholar
[34]
Pelletier, M.M., Brown, R., Shukla, A., Bose, A., Self-healing concrete with a microencapsulated healing agent, University of Rhode Island, Kingston, USA. (2010).
Google Scholar
[35]
Qureshi, T. S., & Al-Tabbaa, A., Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO, Smart Materials and Structures. 25 (2016).
DOI: 10.1088/0964-1726/25/8/084004
Google Scholar
[36]
Van Tittelboom, K., De Belie, N., Van Loo, D., & Jacobs, P., Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent, Cement and Concrete Composites. 33 (2011) 497-505.
DOI: 10.1016/j.cemconcomp.2011.01.004
Google Scholar
[37]
Snoeck, D., Van Tittelboom, K., Steuperaert, S., Dubruel, P., & De Belie, N., Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers, Journal of Intelligent Material Systems and Structures. 25 (2014) 13-24.
DOI: 10.1177/1045389x12438623
Google Scholar
[38]
Qureshi, T., Kanellopoulos, A., & Al-Tabbaa, A, Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing, Construction and Building Materials. 192 (2018) 768-784.
DOI: 10.1016/j.conbuildmat.2018.10.143
Google Scholar