A Review on Self-Healing Concrete

Article Preview

Abstract:

Concrete is one of the most used construction materials worldwide. It is known to be a strong and durable material at a reasonable price. The most well-known problem in concrete is the cracks, which affect the service life of the concrete structures and leads to consumes higher costs through maintenance. Cracks allow penetrating any ions into the concrete resulting in other big problems such as corrosion of steel reinforcement, sulphate attack, carbonation, alkali-aggregate reaction, etc. It is impossible to prevent the formation of cracks, therefore they can be controlled or repaired using a variety of methods. Nowadays, self-healing is one of the widely recognized techniques to improve concrete's long-term durability. Healing agents such as bacteria, chemical compounds, and polymers are utilized. In this method, with the help of a healing agent, the cracks start to heal autonomously during crack formation. Since Bacteria is the most used material for healing concrete, self-healing concrete is also known as bacterial-concrete or bioconcrete. This article provides an overview of self-healing concrete including describing the system, process, durability, and mechanical properties of healed concrete.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-148

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wiktor, V., & Jonkers, H. M., Quantification of crack-healing in novel bacteria-based self-healing concrete, Cement and Concrete Composites. 33 (2011) 763-770.

DOI: 10.1016/j.cemconcomp.2011.03.012

Google Scholar

[2] Hossain, M., Sultana, R., Patwary, M. M., Khunga, N., Sharma, P., & Shaker, S. J., Self-healing concrete for sustainable buildings, A review. Environmental Chemistry Letters. (2022) 1-9.

DOI: 10.1007/s10311-021-01375-9

Google Scholar

[3] Luo, M., Qian, C. X., & Li, R. Y., Factors affecting crack repairing capacity of bacteria-based self-healing concrete, Construction and Building Materials. 87 (2015) 1-7.

DOI: 10.1016/j.conbuildmat.2015.03.117

Google Scholar

[4] Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E., Application of bacteria as self-healing agent for the development of sustainable concrete, Ecological Engineering. 36 (2010) 230-235.

DOI: 10.1016/j.ecoleng.2008.12.036

Google Scholar

[5] Khaliq, W., & Ehsan, M. B., Crack healing in concrete using various bio influenced self-healing techniques, Construction and Building Materials. 102 (2016) 349-357.

DOI: 10.1016/j.conbuildmat.2015.11.006

Google Scholar

[6] Zhong, W., & Yao, W., Influence of damage degree on self-healing of concrete, Construction and building Materials. 22 (2008) 1137-1142.

DOI: 10.1016/j.conbuildmat.2007.02.006

Google Scholar

[7] Wang, J., Van Tittelboom, K., De Belie, N., & Verstraete, W., Use of silica gel or polyurethane immobilized bacteria for self-healing concrete, Construction and Building Materials. 26 (2012) 532-540.

DOI: 10.1016/j.conbuildmat.2011.06.054

Google Scholar

[8] Tziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E., Performance requirements to ensure the efficiency of bacteria-based self-healing concrete, In 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Berkeley. (2016).

DOI: 10.21012/fc9.148

Google Scholar

[9] Breugel, K. V., Is there a market for self-healing cement-based materials, In proceedings of the first international conference on self-healing materials (2007) 1-9.

Google Scholar

[10] Vermeer, C. M., Rossi, E., Tamis, J., Jonkers, H. M., & Kleerebezem, R., From waste to self-healing concrete: A proof-of-concept of a new application for polyhydroxyalkanoate, Resources, Conservation and Recycling. 164 (2021).

DOI: 10.1016/j.resconrec.2020.105206

Google Scholar

[11] Edvardsen, C., Water permeability and autogenous healing of cracks in concrete, Innovation in Concrete Structures: Design and Construction. (1999) 473-487.

Google Scholar

[12] Aldea, C. M., Song, W. J., Popovics, J. S., & Shah, S. P., Extent of healing of cracked normal strength concrete, Journal of Materials in Civil Engineering. 12 (2000) 92-96.

DOI: 10.1061/(asce)0899-1561(2000)12:1(92)

Google Scholar

[13] Jacobsen, S., & Sellevold, E. J., Self-healing of high strength concrete after deterioration by freeze/thaw, Cement and Concrete Research. 26 (1996) 55-62.

DOI: 10.1016/0008-8846(95)00179-4

Google Scholar

[14] Gavimath, C. C., Mali, B. M., Hooli, V. R., Mallpur, J. D., Patil, A. B., Gaddi, D., ... & Ravishankera, B. E., Potential application of bacteria to improve the strength of cement concrete, International Journal of Advanced Biotechnology and Research. 3 (2012) 541-544.

Google Scholar

[15] Bang, S. S., Galinat, J. K., & Ramakrishnan, V., Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii, Enzyme and Microbial Technology. 28 (2001) 404-409.

DOI: 10.1016/s0141-0229(00)00348-3

Google Scholar

[16] Achal, V., Mukerjee, A., & Reddy, M. S., Biogenic treatment improves the durability and remediates the cracks of concrete structures, Construction and Building Materials. 48 (2013) 1-5.

DOI: 10.1016/j.conbuildmat.2013.06.061

Google Scholar

[17] Xu, J., & Yao, W., Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent, Cement and Concrete Research. 64 (2014) 1-10.

DOI: 10.1016/j.cemconres.2014.06.003

Google Scholar

[18] Huynh, N. N. T., Phuong, N. M., Toan, N. P. A., & Son, N. K., Bacillus subtilis HU58 Immobilized in micropores of diatomite for using in self-healing concrete, Procedia Engineering. 171 (2017) 598-605.

DOI: 10.1016/j.proeng.2017.01.385

Google Scholar

[19] Su, Y., Zheng, T., & Qian, C., Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete, Construction and Building Materials. 273 (2021).

DOI: 10.1016/j.conbuildmat.2020.121740

Google Scholar

[20] Siddique, R., & Chahal, N. K., Effect of ureolytic bacteria on concrete properties, Construction and building Materials. 25 (2011) 3791-3801.

DOI: 10.1016/j.conbuildmat.2011.04.010

Google Scholar

[21] Chahal, N., Siddique, R., & Rajor, A., Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete, Construction and Building Materials. 28 (2012) 351-356.

DOI: 10.1016/j.conbuildmat.2011.07.042

Google Scholar

[22] Homma, D., Mihashi, H., & Nishiwaki, T., Self-healing capability of fibre reinforced cementitious composites, Journal of Advanced Concrete Technology. 7 (2009) 217-228.

DOI: 10.3151/jact.7.217

Google Scholar

[23] Williams, S. L., Kirisits, M. J., & Ferron, R. D., Influence of concrete-related environmental stressors on biomineralizing bacteria used in self-healing concrete, Construction and Building Materials. 139 (2017) 611-618.

DOI: 10.1016/j.conbuildmat.2016.09.155

Google Scholar

[24] Stocks-Fischer, S., Galinat, J. K., & Bang, S. S., Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. 31 (1999) 1563-1571.

DOI: 10.1016/s0038-0717(99)00082-6

Google Scholar

[25] Dick, J., De Windt, W., De Graef, B., Saveyn, H., Van der Meeren, P., De Belie, N., & Verstraete, W., Bio-deposition of a calcium carbonate layer on degraded limestone by bacillus species, Biodegradation. 17 (2006) 357-367.

DOI: 10.1007/s10532-005-9006-x

Google Scholar

[26] Mitchell, A. C., Dideriksen, K., Spangler, L. H., Cunningham, A. B., & Gerlach, R., Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping, Environmental Science & Technology. 44 (2010) 270-5276.

DOI: 10.1021/es903270w

Google Scholar

[27] Abo-El-Enein, S.A., Ali, A.H., Talkhan, F.N., Abdel-Gawwad, H.A., Application of microbial biocementation to improve the physico-mechanical properties of cement mortar, HBRC Journal. 9 (2013) 36–40.

DOI: 10.1016/j.hbrcj.2012.10.004

Google Scholar

[28] Maheswaran, S., Dasuru, S. S., Murthy, A. R. C., Bhuvaneshwari, B., Kumar, V. R., Palani, G. S., ... & Sandhya, S., Strength improvement studies using new type wild strain Bacillus cereus on cement mortar, Current Science. 106 (2014) 50-57.

Google Scholar

[29] Vempada, S. R., Reddy, S. S. P., Rao, M. S., & Sasikala, C. I., Strength enhancement of cement mortar using microorganisms-an experimental study, International Journal of Earth Sciences and Engineering. 4 (2011) 933-936.

Google Scholar

[30] Yang, Z., Hollar, J., He, X., & Shi, X., Laboratory assessment of a self-healing cementitious composite, Transportation Research Record. 2142 (2010) 9-17.

DOI: 10.3141/2142-02

Google Scholar

[31] Feiteira, J., Gruyaert, E., & De Belie, N., Self-healing of moving cracks in concrete by means of encapsulated polymer precursors, Construction and Building Materials. 102 (2016) 671-678.

DOI: 10.1016/j.conbuildmat.2015.10.192

Google Scholar

[32] Gruyaert, E., Debbaut, B., Snoeck, D., Díaz, P., Arizo, A., Tziviloglou, E., ... & De Belie, N., Self-healing mortar with pH-sensitive superabsorbent polymers: testing of the sealing efficiency by water flow tests, Smart Materials and Structures. 25 (2016) 1-11.

DOI: 10.1088/0964-1726/25/8/084007

Google Scholar

[33] Kanellopoulos, A., Qureshi, T. S., & Al-Tabbaa, A., Glass encapsulated minerals for self-healing in cement-based composites, Construction and Building Materials. 98 (2015) 780-791.

DOI: 10.1016/j.conbuildmat.2015.08.127

Google Scholar

[34] Pelletier, M.M., Brown, R., Shukla, A., Bose, A., Self-healing concrete with a microencapsulated healing agent, University of Rhode Island, Kingston, USA. (2010).

Google Scholar

[35] Qureshi, T. S., & Al-Tabbaa, A., Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO, Smart Materials and Structures. 25 (2016).

DOI: 10.1088/0964-1726/25/8/084004

Google Scholar

[36] Van Tittelboom, K., De Belie, N., Van Loo, D., & Jacobs, P., Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent, Cement and Concrete Composites. 33 (2011) 497-505.

DOI: 10.1016/j.cemconcomp.2011.01.004

Google Scholar

[37] Snoeck, D., Van Tittelboom, K., Steuperaert, S., Dubruel, P., & De Belie, N., Self-healing cementitious materials by the combination of microfibres and superabsorbent polymers, Journal of Intelligent Material Systems and Structures. 25 (2014) 13-24.

DOI: 10.1177/1045389x12438623

Google Scholar

[38] Qureshi, T., Kanellopoulos, A., & Al-Tabbaa, A, Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing, Construction and Building Materials. 192 (2018) 768-784.

DOI: 10.1016/j.conbuildmat.2018.10.143

Google Scholar