[1]
H.P. Browne, B.A. Neville, S.C. Forster, T.D. Lawley, Transmission of the gut microbiota: spreading of health, Nat. Rev. Microbiol. 15 (2017) 531-543.
DOI: 10.1038/nrmicro.2017.50
Google Scholar
[2]
A. Kumar, J. Dalal, S. Dahiya, R. Punia, K.D. Sharma, A. Ohlan and A.S. Maan, In situ decoration of silver nanoparticles on single-walled carbon nanotubes by microwave irradiation for enhanced and durable anti-bacterial finishing on cotton fabric, Ceram. Intern. 45 (2019) 1011-1019.
DOI: 10.1016/j.ceramint.2018.09.280
Google Scholar
[3]
E. Pakdel, W.A. Daoud, R.J. Varley, X.G. Wang, Antibacterial textile and the effect of incident light wavelength on its photocatalytic self-cleaning activity, Mater. Lett. 318 (2022) 132223.
DOI: 10.1016/j.matlet.2022.132223
Google Scholar
[4]
W.W. Yu, T.G. Liu, S.Y. Cao, C. Wang, C.S. Chen, Constructing MnO2/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity, J. Solid State Chem. 239 (2016) 131-138.
DOI: 10.1016/j.jssc.2016.04.027
Google Scholar
[5]
R.T. Wang, Q. Hao, J.R. Feng, G.C. Wang, H. Ding, D.M. Chen, B.J. Ni, Enhanced separation of photogenerated charge carriers and catalytic properties of ZnO-MnO2 composites by microwave and photothermal effect, J. Alloy. Compd. 786 (2019) 418-427.
DOI: 10.1016/j.jallcom.2019.02.009
Google Scholar
[6]
M.Y. Rafiq, F. Iqbal, F. Aslam, M. Bilal, N. Munir, I. Sultana, F. Ashraf, F. Manzoor, N. Hassan, A. Razaq, Fabrication and characterization of ZnO/MnO2 and ZnO/TiO2 flexible nanocomposites for energy storage applications, J. Alloy. Compd. 729 (2017) 1072-1078.
DOI: 10.1016/j.jallcom.2017.09.253
Google Scholar
[7]
M.W. Kim, B. Joshi, E. Samuel, H. Seok, A. Aldalbahi, M. Almoiqlic, M.T. Swihartd, S.S. Yoon, Electrosprayed MnO2 on ZnO nanorods with atomic layer deposited TiO2 layer for photoelectrocatalytic water splitting, Appl. Catal. B 271 (2020) 118928.
DOI: 10.1016/j.apcatb.2020.118928
Google Scholar
[8]
M.R. Mohammad, T. Brigita, S. Barbara, J. Ivan, S. Danaja, Z. Matija, Sustainable and cost-effective functionalization of textile surfaces with Ag-doped TiO2/polysiloxane hybrid nanocomposite for UV protection, antibacterial and self-cleaning properties, Appl. Surf. Sci. 595 (2022) 153521.
DOI: 10.1016/j.apsusc.2022.153521
Google Scholar
[9]
E. Pakdel, A. W. Daoud, R.J. Varley, X.G. Wang, Antibacterial textile and the effect of incident light wavelength on its photocatalytic self-cleaning activity, Mat. Lett. 318 (2022) 132223.
DOI: 10.1016/j.matlet.2022.132223
Google Scholar
[10]
H.Y. Chai, S.M. Lam, J.C. Sin, Green synthesis of magnetic Fe-doped ZnO nanoparticles via Hibiscus rosa-sinensis leaf extracts for boosted photocatalytic, antibacterial and antifungal activities, Mater. Lett. 242 (2019) 103-106.
DOI: 10.1016/j.matlet.2019.01.116
Google Scholar
[11]
H.J. Zeeshan, S.M. Lam, J.C. Sin, A.R. Mohamed, Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination, Sep. Purif. Technol. 236 (2020) 116195.
DOI: 10.1016/j.seppur.2019.116195
Google Scholar
[12]
O.E. Fayemi, A.S. Adekunle, E.E. Ebenso, A sensor for the determination of lindane using PANI/Zn, Fe (III) oxides and nylon 6, 6/MWCNT/Zn, Fe (III) oxides nanofibers modified glassy carbon electrode, Nanomater. J. 2016 (2016) 1.
DOI: 10.1155/2016/4049730
Google Scholar
[13]
H.U. Shah, F. Wang, M.S. Javed, M. Ahmad, M. Saleem, J. Zhan, Z.U.H. Khan, Y. Li, In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors, J. Energy Storage 17 (2018) 318-326.
DOI: 10.1016/j.est.2018.03.015
Google Scholar
[14]
B. Baruah, L. Downer, D. Agyeman, Fabric-based composite materials containing ZnO-NRs and ZnO-NRs-AuNPs and their application in photocatalysis, Mater. Chem. Phys. 231 (2019) 252-259.
DOI: 10.1016/j.matchemphys.2019.04.006
Google Scholar
[15]
J. Wang, G.H. Wang, X.H. Wei, G. Liu, J. Li, ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB, Appl. Surf. Sci. 456 (2018) 666-675.
DOI: 10.1016/j.apsusc.2018.06.182
Google Scholar
[16]
J. Jaksik, P. Tran, V. Galvez, I. Martinez, D. Ortiz, A. Ly, M. McEntee, E.M. Durke, S.T.J. Aishee, M. Cua, A. Touhami, H.J. Moore, M.J. Uddin, Advanced cotton fibers exhibit efficient photocatalytic self-cleaning and antimicrobial activity, J. Photochem. Photobiol. A 365 (2018) 77-85.
DOI: 10.1016/j.jphotochem.2018.07.037
Google Scholar
[17]
R. Tripathi, A. Narayan, I. Bramhecha, J. Sheikh, Development of multifunctional linen fabric using chitosan film as a template for immobilization of in-situ generated CeO2 nanoparticles, Int. J. Biol. Macromol. 121 (2019) 1154-1159.
DOI: 10.1016/j.ijbiomac.2018.10.067
Google Scholar
[18]
M. Rastgoo, M. Montazer, R.M.A. Malek, T. Harifi, M.M. Rad, Ultrasound mediation for one-pot sonosynthesis and deposition of magnetite nanoparticles on cotton/polyester fabric as a novel magnetic, photocatalytic, sonocatalytic, antibacterial and antifungal textile, Ultrason. Sonochem. 31 (2016) 257-266.
DOI: 10.1016/j.ultsonch.2016.01.008
Google Scholar
[19]
H.B. Uma, S. Anandaa, M.B. Nandaprakash, High efficient photocatalytic treatment of textile dye and antibacterial activity via electrochemically synthesized Ni-doped ZnO nano photocatalysts, Chem. Data Collect. 24 (2019) 100301.
DOI: 10.1016/j.cdc.2019.100301
Google Scholar