Boosted Antimicrobial and Self-Cleaning Activities with MnO2/ ZnO Coated on Cotton Fabric

Article Preview

Abstract:

In this study, sheet-like MnO2/ZnO microflower (MnO2/ZnO) loaded on cotton fabric was prepared via a facile reflux-thermal deposition combined technique. The coated fabric and as-fabricated particles were analyzed through numerous characterization techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), tensile strength, Ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) as well as photoluminescence (PL) measurements. The optical trait of the ZnO was significantly improved by the addition of MnO2 that extended reflectance edges in the visible light region. The treated cotton fabric greatly inhibited the growth of Escherichia Coli bacteria and Aspergillus Niger fungi as testified by the zone of inhibition surrounding the fabric samples. The self-cleaning outcomes also demonstrated that 3% MnO2/ZnO/fabric presented highest visible light photodegradation of phenol among the samples. The promising performance of the cotton fabric coated by MnO2/ZnO composite was related to the reactive oxygen species produced by the heterojunction photocatalytic mechanism under exposure of visible light.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-95

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.P. Browne, B.A. Neville, S.C. Forster, T.D. Lawley, Transmission of the gut microbiota: spreading of health, Nat. Rev. Microbiol. 15 (2017) 531-543.

DOI: 10.1038/nrmicro.2017.50

Google Scholar

[2] A. Kumar, J. Dalal, S. Dahiya, R. Punia, K.D. Sharma, A. Ohlan and A.S. Maan, In situ decoration of silver nanoparticles on single-walled carbon nanotubes by microwave irradiation for enhanced and durable anti-bacterial finishing on cotton fabric, Ceram. Intern. 45 (2019) 1011-1019.

DOI: 10.1016/j.ceramint.2018.09.280

Google Scholar

[3] E. Pakdel, W.A. Daoud, R.J. Varley, X.G. Wang, Antibacterial textile and the effect of incident light wavelength on its photocatalytic self-cleaning activity, Mater. Lett. 318 (2022) 132223.

DOI: 10.1016/j.matlet.2022.132223

Google Scholar

[4] W.W. Yu, T.G. Liu, S.Y. Cao, C. Wang, C.S. Chen, Constructing MnO2/single crystalline ZnO nanorod hybrids with enhanced photocatalytic and antibacterial activity, J. Solid State Chem. 239 (2016) 131-138.

DOI: 10.1016/j.jssc.2016.04.027

Google Scholar

[5] R.T. Wang, Q. Hao, J.R. Feng, G.C. Wang, H. Ding, D.M. Chen, B.J. Ni, Enhanced separation of photogenerated charge carriers and catalytic properties of ZnO-MnO2 composites by microwave and photothermal effect, J. Alloy. Compd. 786 (2019) 418-427.

DOI: 10.1016/j.jallcom.2019.02.009

Google Scholar

[6] M.Y. Rafiq, F. Iqbal, F. Aslam, M. Bilal, N. Munir, I. Sultana, F. Ashraf, F. Manzoor, N. Hassan, A. Razaq, Fabrication and characterization of ZnO/MnO2 and ZnO/TiO2 flexible nanocomposites for energy storage applications, J. Alloy. Compd. 729 (2017) 1072-1078.

DOI: 10.1016/j.jallcom.2017.09.253

Google Scholar

[7] M.W. Kim, B. Joshi, E. Samuel, H. Seok, A. Aldalbahi, M. Almoiqlic, M.T. Swihartd, S.S. Yoon, Electrosprayed MnO2 on ZnO nanorods with atomic layer deposited TiO2 layer for photoelectrocatalytic water splitting, Appl. Catal. B 271 (2020) 118928.

DOI: 10.1016/j.apcatb.2020.118928

Google Scholar

[8] M.R. Mohammad, T. Brigita, S. Barbara, J. Ivan, S. Danaja, Z. Matija, Sustainable and cost-effective functionalization of textile surfaces with Ag-doped TiO2/polysiloxane hybrid nanocomposite for UV protection, antibacterial and self-cleaning properties, Appl. Surf. Sci. 595 (2022) 153521.

DOI: 10.1016/j.apsusc.2022.153521

Google Scholar

[9] E. Pakdel, A. W. Daoud, R.J. Varley, X.G. Wang, Antibacterial textile and the effect of incident light wavelength on its photocatalytic self-cleaning activity, Mat. Lett. 318 (2022) 132223.

DOI: 10.1016/j.matlet.2022.132223

Google Scholar

[10] H.Y. Chai, S.M. Lam, J.C. Sin, Green synthesis of magnetic Fe-doped ZnO nanoparticles via Hibiscus rosa-sinensis leaf extracts for boosted photocatalytic, antibacterial and antifungal activities, Mater. Lett. 242 (2019) 103-106.

DOI: 10.1016/j.matlet.2019.01.116

Google Scholar

[11] H.J. Zeeshan, S.M. Lam, J.C. Sin, A.R. Mohamed, Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination, Sep. Purif. Technol. 236 (2020) 116195.

DOI: 10.1016/j.seppur.2019.116195

Google Scholar

[12] O.E. Fayemi, A.S. Adekunle, E.E. Ebenso, A sensor for the determination of lindane using PANI/Zn, Fe (III) oxides and nylon 6, 6/MWCNT/Zn, Fe (III) oxides nanofibers modified glassy carbon electrode, Nanomater. J. 2016 (2016) 1.

DOI: 10.1155/2016/4049730

Google Scholar

[13] H.U. Shah, F. Wang, M.S. Javed, M. Ahmad, M. Saleem, J. Zhan, Z.U.H. Khan, Y. Li, In-situ growth of MnO2 nanorods forest on carbon textile as efficient electrode material for supercapacitors, J. Energy Storage 17 (2018) 318-326.

DOI: 10.1016/j.est.2018.03.015

Google Scholar

[14] B. Baruah, L. Downer, D. Agyeman, Fabric-based composite materials containing ZnO-NRs and ZnO-NRs-AuNPs and their application in photocatalysis, Mater. Chem. Phys. 231 (2019) 252-259.

DOI: 10.1016/j.matchemphys.2019.04.006

Google Scholar

[15] J. Wang, G.H. Wang, X.H. Wei, G. Liu, J. Li, ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB, Appl. Surf. Sci. 456 (2018) 666-675.

DOI: 10.1016/j.apsusc.2018.06.182

Google Scholar

[16] J. Jaksik, P. Tran, V. Galvez, I. Martinez, D. Ortiz, A. Ly, M. McEntee, E.M. Durke, S.T.J. Aishee, M. Cua, A. Touhami, H.J. Moore, M.J. Uddin, Advanced cotton fibers exhibit efficient photocatalytic self-cleaning and antimicrobial activity, J. Photochem. Photobiol. A 365 (2018) 77-85.

DOI: 10.1016/j.jphotochem.2018.07.037

Google Scholar

[17] R. Tripathi, A. Narayan, I. Bramhecha, J. Sheikh, Development of multifunctional linen fabric using chitosan film as a template for immobilization of in-situ generated CeO2 nanoparticles, Int. J. Biol. Macromol. 121 (2019) 1154-1159.

DOI: 10.1016/j.ijbiomac.2018.10.067

Google Scholar

[18] M. Rastgoo, M. Montazer, R.M.A. Malek, T. Harifi, M.M. Rad, Ultrasound mediation for one-pot sonosynthesis and deposition of magnetite nanoparticles on cotton/polyester fabric as a novel magnetic, photocatalytic, sonocatalytic, antibacterial and antifungal textile, Ultrason. Sonochem. 31 (2016) 257-266.

DOI: 10.1016/j.ultsonch.2016.01.008

Google Scholar

[19] H.B. Uma, S. Anandaa, M.B. Nandaprakash, High efficient photocatalytic treatment of textile dye and antibacterial activity via electrochemically synthesized Ni-doped ZnO nano photocatalysts, Chem. Data Collect. 24 (2019) 100301.

DOI: 10.1016/j.cdc.2019.100301

Google Scholar