Investigation of Forging Tools on the Basis of Subjective Assessment of Tool Life

Article Preview

Abstract:

Forging tools must be able to withstand very strong mechanical, thermal, tribological, and chemical stresses. The extent to which a tool can withstand these stresses depends on the material used and its pre-treatment as well as the heat and surface treatment, i.e. the load capacity. The ratio of stress to load capacity determines how high the tool life of a forging tool is. This paper deals with the variations in the tool life of forging tools using the example of a specific industrial stage sequence and production conditions. Due to a large number of influencing variables that have an effect on the tool during the entire tool life history, the focus of this work is placed on influencing variables of the forming process. Based on real production parameters of a forging company, which are recorded during a period for the investigation, the process data are analyzed about an influence on the tool life. The investigation focuses on four influencing variables, namely the subjective assessment of the end of the tool life, the interaction between the forming stages, production interruptions, and the cooling and lubrication of the forming tools. For the parameters that are not yet recorded during the trials, promising available measurement methods are identified and tested under laboratory conditions. One example of this is the recording of the actual spray quantities that are sprayed onto the tool surface before the forming process. The results of the investigations show that the tool life fluctuations can be reduced by about 16% and as a consequence, the average tool life can be increased by about 13%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-136

Citation:

Online since:

February 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Haggenmueller, P. Grupp, M. Marré, D. Beihofer, Resource Efficiency and Industry 4.0 for Forming Machines, 2015, 10.13140/RG.2.1.4493.(1925).

Google Scholar

[2] T. Traub, Methodik zur Konzeption entscheidungsunterstützender Assistenzsysteme am Beispiel des Walzprofilierens, (2019).

Google Scholar

[3] G. Gambhire, R. Dhake, A. Patil, N. Abhishek, S. Nagrale, Productivity Improvement in Forging Industry Using Industrial Engineering Techniques, International Conference on Smart Technologies for Digital World- Industrial Engineering Perspective, (2016).

Google Scholar

[4] M. Liewald, C. Karadogan, A. Felde, R. Lodwig, Development and Integration of Digital Technologies in the Forging Process Sequence. New Developments in Forging Technology, Page 245, 15-17 May (2017).

Google Scholar

[5] V.P. Andelfinger, T. Hänisch, Industrie 4.0. Wie cyber-physische Systeme die Arbeitswelt verändern, Wiesbaden, (2017).

Google Scholar

[6] S. Hemmrich, Data Mining und Industrie 4.0. Moderne Verfahren der Datenanalyse, Heilbronn, (2015).

Google Scholar

[7] S. von Enzberg, L.M. Waschbusch, Big Data in der Produktion: große Daten = großes Potential?, Industry of Things, 2018, retrieved from https://www.industry-of-things.de/big-data-in-der-produktion-grosse-daten-grosses-potential-a-776716/.

Google Scholar

[8] Fraunhofer IPA, Definition und Nutzen von Industrie 4.0, Stuttgart, 2018, retrieved from: https://www.ipa.fraunhofer.de/de/ueber_uns/Leitthemen/industrie-4-0/definition.html.

Google Scholar

[9] R. Singh, How Data Science Adds Value to your Business, insideBIGDATA, 2018, retrieved from: https://insidebigdata.com/2018/08/25/data-science-adds-value-business/.

Google Scholar

[10] B. Lindemann, N. Jazdi, M. Weyrich, Multidimensionale Datenmodellierung und Analyse zur Qualitätssicherung in der Fertigungsautomatisierung,, in Automation, 03.-04.07.2018, Baden-Baden, (2018).

DOI: 10.51202/9783181023303-1

Google Scholar

[11] U. Haneke, S. Trahasch, M. Zimmer, C. Felden, Data Science, Grundlagen, Architekturen, Anwendungen, Heidelberg, (2019).

Google Scholar

[12] J. Dohmann, Reduzierung instationärer Betriebszustände beim Gesenkschmieden, Department of Mechanical Engineering, University of Hannover, (1999).

Google Scholar

[13] M. Marré, R. Labs, A. Karaman, EMuDig 4.0 - Effizienzschub in der Massivumformung durch Entwicklung und Integration digitaler Technologien im Engineering der gesamten Wertschöpfungskette, Consortium final report, (2020).

Google Scholar

[14] O. Lösch, C. Gollmer, E. Jochem, F. Reitze, M. Schön, F.A.T. Chacón, Arbeitspapier 3 – Minderung der industriellen Treibhausgasemissionen Deutschlands durch materialbezogene Handlungsansätze in ausgewählten Branchen – ein Problemaufriss, Institut für Ressourceneffizienz und Energiestrategien GmbH (IREES), Karlsruhe and Berlin, (2018).

Google Scholar

[15] F. Klocke, Fertigungsverfahren 4, Umformen, Berlin Heidelberg, (2017).

Google Scholar

[16] PROHERIS Daten- und Prozesstechnik GmbH, Entwicklung eines Konzeptes zur Korrelation Lebensgeschichte / Standmenge für Warmumformwerkzeuge, study on behalf of the Industrieverband Massivumforung e.V., Hagen, (2013).

Google Scholar

[17] H. Hoffmann, R. Neugebauer, G. Spur, Handbuch Umformen, Münich, (2012).

Google Scholar

[18] J. Richter, H. Prinzhorn, T. Blohn, J. Langer, M. Stonis, B.A. Behrens, Untersuchung des losgrößenabhängigen Werkzeugverschleißes beim Gesenkschmieden von Stahlbauteilen, umformtechnik.net, 2017, retrieved from: https://umformtechnik.net/content/location/72746.

Google Scholar

[19] H. Paschke, M. Weber, M. Baumer, K. Brunotte, L. Lippold, H. Brand, Neue Ansätze zur Verschleißreduzierung bei Werkzeugen der Warmmassivumformung, in Werkstoff Woche, 14.-17.09.2015, Dresden, (2015).

Google Scholar

[20] K. Sommer, J. Schofer, R. Heinze, Verschleiß metallischer Werkstoffe: Erscheinungsformen sicher beurteilen, Wiesbaden, (2018).

DOI: 10.1007/978-3-8348-2464-6

Google Scholar

[21] M. Wiergräber, Werkzeugverschleiß in der Massivumformung, Stuttgart, (1983).

Google Scholar

[22] Industrieverband Massivumformung: Erhöhung der Standmenge der Umformwerkzeuge.

Google Scholar

[23] T. Yilkiran, B.A. Behrens, B. Buchmayr, Maßnahmen zur Reparatur und Lebensdauererhöhung von Schmiedewerkzeugen, in SchmiedeJOURNAL, (2012).

Google Scholar

[24] R. Herbertz, H. Hermanns, R. Labs, H.U. Volz, Massivumformung kurz und bündig, Hagen, (2013).

Google Scholar

[25] Institute of Forming Technology and Forming Machines (IFUM), Department of CA Techniques, Verschleißvorhersage an Schmiedewerkzeugen, (2012).

Google Scholar