Optimization of Machining Variables of Inconel 800 Alloy in CNC Face Milling Using TiAlN and TiAlN-TiN Coated Inserts

Article Preview

Abstract:

This research work is based on the machinability of an Inconel 800 alloy using TiAlN-coating and TiAlN-TiN-coating tools. In the CNC VMC Face milling process feed, depth of cut (DoC), and cutting speed consider input variables and surface roughness, Tool wear is measured for all machining conditions. To enhance the machining conditions a Taguchi L9 Design of Experiment was created. ANOVA analysis was used to identify the important variables influencing Flank wear (tool wear) and surface roughness. The signal-to-noise ratio for the ideal cutting combination was identified by evaluating the optimum surface roughness and tool wear. for the effect of coating, a comparison was done between the findings obtained using both TiAlN-coated and TiAlN-TiN tungsten carbide-coated tools. The best optimum surface roughness and tool wear of the experiment conducted under machining with TiAlN-TiN coated carbide tool resulted in .3433 µm and 128 µm respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-150

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Swain, P. K., Das Mohapatra, K., & Swain, P. K. (2020). Optimization, error analysis, and mathematical modeling of Al-SiCp metal matrix nanocomposites using coated carbide insert. Materials Today: Proceedings, 26, 620–631

DOI: 10.1016/j.matpr.2019.11.334

Google Scholar

[2] Rajkumar, G., Balasundaram, R., Ganesh, N., & Rajaram, S. (2018). Investigation of turning parameters of machining Inconel 718 using titanium and Carbide inserts. Materials Today: Proceedings, 5(5), 11283–11294

DOI: 10.1016/j.matpr.2018.02.095

Google Scholar

[3] Mishra, S. K., Ghosh, S., & Aravindan, S. (2019). Performance of laser processed carbide tools for machining of ti6al4v alloys: A combined study on experimental and Finite Element Analysis. Precision Engineering, 56, 370–385

DOI: 10.1016/j.precisioneng.2019.01.006

Google Scholar

[4] Devillez, A., Schneider, F., Dominiak, S., Dudzinski, D., & Larrouquere, D. (2007). Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear, 262(7-8), 931–942

DOI: 10.1016/j.wear.2006.10.009

Google Scholar

[5] Swain, N., Venkatesh, V., Kumar, P., Srinivas, G., Ravishankar, S., & Barshilia, H. C. (2017). An experimental investigation on the machining characteristics of nimonic 75 using uncoated and TiAlN coated tungsten carbide micro-end mills. CIRP Journal of Manufacturing Science and Technology, 16, 34–42

DOI: 10.1016/j.cirpj.2016.07.005

Google Scholar

[6] Grzesik, W., Rech, J., Żak, K., & Claudin, C. (2009). Machining performance of pearlitic–ferritic nodular cast iron with coated carbide and silicon nitride ceramic tools. International Journal of Machine Tools and Manufacture, 49(2), 125–133

DOI: 10.1016/j.ijmachtools.2008.10.003

Google Scholar

[7] Sen, B., Gupta, M. K., Mia, M., Mandal, U. K., & Mondal, S. P. (2020). Wear behaviour of TiAlN coated solid carbide end-mill under alumina enriched minimum quantity palm oil-based lubricating condition. Tribology International, 148, 106310

DOI: 10.1016/j.triboint.2020.106310

Google Scholar

[8] Bushlya, V., Johansson, D., Lenrick, F., Ståhl, J.-E., & Schultheiss, F. (2017). Wear mechanisms of uncoated and coated cemented carbide tools in machining lead-free Silicon Brass. Wear, 376-377, 143–151

DOI: 10.1016/j.wear.2017.01.039

Google Scholar

[9] Kene, A. P., Orra, K., & Choudhury, S. K. (2016). Experimental investigation of tool wear behavior of multi-layered coated carbide inserts using various sensors in hard turning process. IFAC-PapersOnLine, 49(12), 180–184

DOI: 10.1016/j.ifacol.2016.07.592

Google Scholar

[10] Zhao, J., & Liu, Z. (2020). Influences of coating thickness on cutting temperature for dry hard turning inconel 718 with PVD TiAlN coated carbide tools in initial tool wear stage. Journal of Manufacturing Processes, 56, 1155–1165

DOI: 10.1016/j.jmapro.2020.06.010

Google Scholar

[11] Sahoo, A. K., & Sahoo, B. (2012). Experimental investigations on machinability aspects in finish hard turning of Aisi 4340 steel using uncoated and multilayer coated carbide inserts. Measurement, 45(8), 2153–2165

DOI: 10.1016/j.measurement.2012.05.015

Google Scholar

[12] Kurniawan, R., Park, G. C., Park, K. M., Zhen, Y., Kwak, Y. I., Kim, M. C., Lee, J. M., Ko, T. J., & Park, C.-S. (2020). Machinability of modified Inconel 713C using a WC TiAlN-coated tool. Journal of Manufacturing Processes, 57, 409–430

DOI: 10.1016/j.jmapro.2020.06.032

Google Scholar

[13] Sahin, Y., & Motorcu, A. R. (2005). Surface roughness model for machining mild steel with coated carbide tool. Materials & Design, 26(4), 321–326

DOI: 10.1016/j.matdes.2004.06.015

Google Scholar

[14] Alagarsamy, S. V., Ravichandran, M., Meignanamoorthy, M., Chanakyan, C., Dinesh Kumar, S., & Sakthivelu, S. (2020). Influence of CNC turning variables on high strength beryllium-copper (c17200) alloy using tungsten carbide insert. Materials Today: Proceedings, 27, 925–930

DOI: 10.1016/j.matpr.2020.01.260

Google Scholar

[15] Shankar, N. V. S., Ravi Shankar, H., Pavan Kumar, N., & Saichandu, K. (2020). Process parameter optimization for minimizing vibrations and surface roughness during turning en19 steel using coated carbide tool. Materials Today: Proceedings, 24, 788–797

DOI: 10.1016/j.matpr.2020.04.387

Google Scholar

[16] Radha Krishnan, B., & Ramesh, M. (2020). Optimization of machining process parameters in CNC turning process of IS2062 E250 steel using coated carbide cutting tool. Materials Today: Proceedings, 21, 346–350

DOI: 10.1016/j.matpr.2019.05.460

Google Scholar

[17] Haja Syeddu Masooth, P., Jayakumar, V., & Bharathiraja, G. (2020). Experimental investigation on surface roughness in CNC end milling process by uncoated and TiAlN coated carbide end mill under dry conditions. Materials Today: Proceedings, 22, 726–736

DOI: 10.1016/j.matpr.2019.10.036

Google Scholar

[18] Verma, M., & Pradhan, S. K. (2020). Experimental and numerical investigations in CNC turning for different combinations of tool inserts and workpiece material. Materials Today: Proceedings, 27, 2736–2743

DOI: 10.1016/j.matpr.2019.12.193

Google Scholar

[19] Günay, M., Korkmaz, M. E., & Yaşar, N. (2020). Performance analysis of coated carbide tool in turning of Nimonic 80a superalloy under different cutting environments. Journal of Manufacturing Processes, 56, 678–687

DOI: 10.1016/j.jmapro.2020.05.031

Google Scholar

[20] Kumari, S., Sonia, P., Singh, B., Abhishek, K., & Saxena, K. K. (2020). Optimization of surface roughness in EDM of pure magnesium (Mg) using TLBO. Materials Today: Proceedings, 26, 2458–2461

DOI: 10.1016/j.matpr.2020.02.523

Google Scholar

[21] Sonia, P., Jain, J. K., & Saxena, K. K. (2020). Influence of severe metal forming processes on microstructure and mechanical properties of MG Alloys. Advances in Materials and Processing Technologies, 1–24

DOI: 10.1080/2374068x.2020.1802554

Google Scholar

[22] Bandhu, D., Kumari, S., Prajapati, V., Saxena, K. K., & Abhishek, K. (2020). Experimental Investigation and Optimization of RMDtm welding parameters for ASTM A387 grade 11 steel. Materials and Manufacturing Processes, 36(13), 1524–1534

DOI: 10.1080/10426914.2020.1854472

Google Scholar

[23] Das, L., Nayak, R., Saxena, K. K., Nanda, J., Jena, S. P., Behera, A., Sehgal, S., Prakash, C., Dixit, S., & Abdul-Zahra, D. S. (2022). Determination of optimum machining parameters for face milling process of Ti6a14v metal matrix composite. Materials, 15(14), 4765

DOI: 10.3390/ma15144765

Google Scholar

[24] Sonia, P., Jain, J. K., & Saxena, K. K. (2021). Influence of ultrasonic vibration assistance in manufacturing processes: A Review. Materials and Manufacturing Processes, 36(13), 1451–1475

DOI: 10.1080/10426914.2021.1914843

Google Scholar