Effect of Quantum Dots Dispersion on the Structural, Optical, and Thermal Properties of Liquid Crystal System

Article Preview

Abstract:

Liquid crystal-quantum dot (LC-QD) composites are promising new materials for a number of applications in displays, energy harvesting, and photonics. In the present work, quantum dispersion in the mixture of LCs of cholesteric and nematic phases is reported. The combination of two LCs, namely Cholesteryl Palmitate (cholesteric 97%) and 4′-Pentyl-4-biphenylcarbonitrile (nematic, 98%), were used in equal proportion while CdS quantum dots were added in this mixture. The thermal, optical, and structural properties of this new LC-QD composite system were analyzed using differential scanning calorimetry (DSC), ultra-violet visible (UV-VIS) spectroscopy, Fabry-Perot scattering studies (FPSS), and Fourier transform infrared (FTIR) spectroscopy. Structural studies indicate that the QDs are uniformly dispersed inside the LC matrix rather than on the surface area. It was observed that quantum dot dispersion increases the strength of the LC mixture. It also changes the phase behavior of the LC mixture affecting the overall performance of LC-QD composite systems. The present findings would be very helpful for the design of the display and photonic devices with an improved optical response.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-42

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Emergence of colloidal quantumdot light-emitting technologies, Nat. Photonics 7 (2013) 13–23, https://doi.org/10. 1038/nphoton.2013.328.

DOI: 10.1038/nphoton.2012.328

Google Scholar

[2] Chinky, Pankaj Kumar, Vandna Sharma, Praveen Malik, K.K. Raina, Nano particles induced vertical alignment of liquid crystal for display devices with augmented morphological and electro-optical characteristics, Journal of Molecular Structure, 1196 (2019) 866-873, https://doi.org/

DOI: 10.1016/j.molstruc.2019.06.045

Google Scholar

[3] J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum dot- sensitized solar cell, Nanoscale 3 (2011) 4088–4093, https://doi.org/10.1039/ c1nr10867k.

DOI: 10.1039/c1nr10867k

Google Scholar

[4] J.W. Stouwdam, R.A.J. Janssen, Red, green, and blue quantum dot LEDs with solution processable ZnOnanocrystal electron injection layers, J. Mater. Chem. 18 (2008)1889–1894.

DOI: 10.1039/b800028j

Google Scholar

[5] Swapnil Doke, Eduardo Martinez-Teran, Ahmed A. El-Gendy, Prasun Ganguly, ShailajaMahamuni, Sustained multiferroicity in liquid crystal induced by core/shell quantum dots, Journal of Molecular Liquids, 288 (2019) 110836

DOI: 10.1016/j.molliq.2019.04.113

Google Scholar

[6] J. Prakash, A. Chandran, A.M. Biradar, Scientific developments of liquid crystal-basedoptical memory: a review, Reports Prog. Phys. 80 (2017), 16601, https://doi.org/.

DOI: 10.1088/0034-4885/80/1/016601

Google Scholar

[7] M. Geller, A.Marent, T. Nowozin, D. Bimberg, N. Aķay, N. Öncan, A write time of 6 nsfor quantum dot-based memory structures, Appl. Phys. Lett. 92 (2008), 092108.

DOI: 10.1063/1.2890731

Google Scholar

[8] D. Loss, D.P. Divincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1998) 120–126.

DOI: 10.1103/PhysRevA.57.120

Google Scholar

[9] B. Senyuk, J. S. Evans, P. J. Ackerman, T. Lee, P. Manna, L.Vigderman, E. R. Zubarev, J.V. de Lagemaat, and I. I. Smalyukh, Nano Lett. 12, 955 (2012).

DOI: 10.1021/nl204030t

Google Scholar

[10] M. B. Pandey, T. Porenta, J. Brewer, A. Burkart, S. Copar, S. Zumer, and I. I. Smalyukh, Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring Phys. Rev. E 89, 060502(R) (2014).

DOI: 10.1103/PhysRevE.89.060502

Google Scholar

[11] Santosh A. Mani, Jyoti R. Amare, Sameer U. Hadkar, Krishnakant G. Mishra, Madhavi S. Pradhan, Hind Al-Johani & Pradip B. Sarawade (2017) Investigations of optical and thermal response of polymer dispersed binary liquid crystals, Molecular Crystals and Liquid Crystals, 646:1, 183-193, https://doi.org/

DOI: 10.1080/15421406.2017.1287478

Google Scholar

[12] U. B. Singh, R Dhar, A. S. Pandey, S. Kumar, R. Dabrowski, and M. B. Pandey, Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites, AIP Advances 4, 117112 (2014);.

DOI: 10.1063/1.4901908

Google Scholar

[13] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Science Publications, Oxford, 1993).

Google Scholar

[14] S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University Press, Cambridge, 1994).

Google Scholar

[15] Shri Singh, Impact of Dispersion of Nanoscale Particles on the Properties of Nematic Liquid Crystals, Crystals 9 (2019), 475;.

DOI: 10.3390/cryst9090475

Google Scholar

[16] Amit Sharma, Praveen Malik, Pankaj Kumar Electro-Optical and Dielectric Responses of ZnO Nanoparticles Doped Nematic Liquid Crystal in In-Plane Switching (IPS) Mode, Integrated Ferroelectrics, 202:1, 52-66(2019)

DOI: 10.1080/10584587.2019.1674824

Google Scholar

[17] Fanindra Pati Pandey, Ayushi Rastogi, Shri Singh, Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4'- heptyl-4-biphenylcarbonitrile (7CB), Optical Materials, 105, 109849 (2020)

DOI: 10.1016/j.optmat.2020.109849

Google Scholar

[18] Andrea L. Rodarte, Fredy Cisneros, Jason E. Hein, Sayantani Ghoshand Linda S. Hirst Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices Photonics 2, 855-864 (2015), https://doi.org /

DOI: 10.3390/photonics2030855

Google Scholar

[19] Javad Mirzaei, Mitya Reznikov, Torsten Hegmann, Quantum dots as liquid crystal dopants Journal of Materials, Chemistry 22(42), (2012), 22350-22365 https://doi.org/

DOI: 10.1039/C2JM33274D

Google Scholar

[20] CW Oh , EG Park, HG Park Enhanced electro-optical properties in titanium silicon oxide nanoparticle doped nematic liquid crystal system Surface and Coatings TechnologyVolume 360, 25 (2019), 50-55,https://doi.org /.

DOI: 10.1016/j.surfcoat.2019.01.014

Google Scholar

[21] Krishnakant G. Mishra S.K. Dubey, Santosh A. Mani, Madhavi S. Pradhan, Comparative study of nanoparticles doped in Liquid Crystal Polymer System, Journal of Molecular Liquids 224 (2016) 668–671

DOI: 10.1016/j.molliq.2016.10.075

Google Scholar

[22] Lee, W.K.; Hwang, H.J.; Chao, M.J.; Park, H.G.; Han, J.W.; Song, S.; Jang, J.H.; Seo, D.S. CIS–ZnS Quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale 2013, 5,193–198

DOI: 10.1039/c2nr32458j

Google Scholar

[23] Cho, M.J.; Park, H.G.; Jeong, H.C.; Lee, J.W.; Jung, Y.H.; Kim, D.H.; Kim, J.W.; Lee, J.W.; Seo, D.S. Superior fast switching of liquid crystal devices using graphene quantum dots. Liq. Cryst. 2014, 41,761–767

DOI: 10.1080/02678292.2014.889233

Google Scholar

[24] Rastogi, A.; Pathak, G.; Herman, J.; Srivastava, A.; Manohar, R. Cd1−XZnXS/ZnS core/shell quantum dots in nematic liquid crystals to improve material parameter for better performance of liquid crystal based devices. J. Mol. Liq. 2018, 255, 93–101

DOI: 10.1016/j.molliq.2018.01.132

Google Scholar

[25] Santosh Mani, MadhaviPradhan, Archana, Sharma, Sameer Hadkar, Krishnakant Mishra, JyotiAmare, PradipSarawade.Effect of Ferroelectric Nanopowder on Electrical and Acoustical Properties of Cholesteric Liquid Crystal, Non-Metallic Material Science,02, 01, 2020

DOI: 10.30564/omms.v2i1.1821

Google Scholar

[26] Singh, U.B.; Pandey, M.B.; Dhar, R.; Verma, R.; Kumar, S. Effect of dispersion of CdSe quantum dots on phase transition, electrical and electro-optical properties of 4PP4BO. Liq. Cryst. 2016, 43, 1075–1082

DOI: 10.1080/02678292.2016.1159344

Google Scholar

[27] Tripathi, P.K.; Joshi, B.; Singh, S. Pristine and quantum dots dispersed nematic liquid crystal: Impact of dispersion and applied voltage on dielectric and electro-optical properties. Opt. Mater. 2017, 69, 61–68

DOI: 10.1016/j.optmat.2017.04.023

Google Scholar

[28] Rastogi, A.; Agrahari, K.; Pathak, G.; Srivastava, A.; Herman, J.; Manohar, R. Study of an interesting physical mechanism of memory effect in nematic liquid crystal dispersed with quantum dots. Liq. Cryst. 46 (2019), 725–736

DOI: 10.1080/02678292.2018.1523477

Google Scholar

[29] Rita A. Gharde, Madhavi S. Pradhan, Santosh A. Mani, Jyoti R. Amare. Electro-Optical Studies on Nanopowder Doped Liquid Crystal. International Journal of Chemical and Physical Sciences, NCRTSM, 2014, 3(Special Issue). ISSN: 2319-6602

Google Scholar

[30] Shivani Pandey, Tripti Vimal, Dharmendra Pratap Singh, Swadesh Kumar Gupta, GovindPathak, RohitKatiyar& Rajiv Manohar.Core/shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarization coupling with dopant,Liquid Crystals,43:7(2016),980-993

DOI: 10.1080/02678292.2016.1155768

Google Scholar

[31] Krishnakant G. Mishra Sheshmani K. Dubey and Santosh A. Mani Optical characterization of inorganic nanoparticles doped in polymer dispersed liquid crystal, Molecular Crystals and Liquid Crystals, 647:1 (2017), 244-252

DOI: 10.1080/15421406.2017.1289603

Google Scholar

[32] Aradhana Roy, Kaushlendra Agrahari, Atul Srivastava and Rajiv Manohar, Plasmonic resonance instigated enhanced photoluminescence in quantum dotdispersednematic liquid crystal, Liquid Crystals, pp.1-7, 2018.

DOI: 10.1080/02678292.2018.1549283

Google Scholar

[33] Linda S. Hirst, Jennifer Kirchhoff, Richard Inman and SayantaniGhosh, Quantum dot self-assembly in liquid crystal media, Proc. of SPIE Vol. 7618, 76180F­1 to 76180F­7, 2010.

DOI: 10.1117/12.848195

Google Scholar

[34] Swadesh Kumar Gupta, Dharmendra Pratap Singh, Pankaj Kumar Tripathi, Rajiv Manohar ,Mahesh Varia, Laxmi K. SagarbandSandeep Kumar, CdSe quantum dot-dispersed DOBAMBC: an electro-optical study, Liquid Crystals, Vol. 40, No. 4, 528–533, 2013.

DOI: 10.1080/02678292.2012.761735

Google Scholar

[35] Obey Koshy, Lakshmanan Subramanian, Sabu Thomas, Chapter 5 - Differential Scanning Calorimetry in Nanoscience and Nanotechnology, Editor(s): Sabu Thomas, Raju Thomas, Ajesh K. Zachariah, Raghvendra Kumar Mishra, In Micro and Nano Technologies, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Elsevier, 2017, Pages 109-122, ISBN 9780323461399.

DOI: 10.1016/b978-0-323-46139-9.00005-0

Google Scholar

[36] Pooria Gill, Tahereh Tohidi Moghadam, and BijanRanjbar, Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience, Journal of Biomolecular Techniques vol.21, iss.4, p.167–193, 2010.

Google Scholar

[37] A. Ibrahim, S. K. J. Al-An, Models of optical absorption in amorphous semiconductors at the absorption edge — A review and re-evaluation. Czechoslovak Journal of Physics, 44(8), 785–797, 1994.

DOI: 10.1007/bf01700645

Google Scholar

[38] B. I. Lev and S. B. Chernyshuk, Supermolecular structures in nematic–cholesteric mixtures, Journal of Experimental and Theoratical Physics, Vol.8, No.2, pp.279-287, 1999.

DOI: 10.1134/1.558981

Google Scholar

[39] Andrea L. Rodarte, Zachary S. Nuno, Blessing H. Cao, Ronald J. Pandolfi, Makiko T. Quint, Sayantani Ghosh, Jason E. Hein, and Linda S. Hirst, Tuning Quantum-Dot Organization in Liquid Crystals for Robust Photonic Applications, ChemPhys Chem 15(7), 1413-1421, 2014.

DOI: 10.1002/cphc.201301007

Google Scholar

[40] Mani, Santosh, et al. "The influence of polymer on optical and thermal properties of nematic liquid crystals" Journal of Physics: Conference Series. Vol. 2070. No. 1. IOP Publishing, (2021)

Google Scholar

[41] Rani, Aysha, Susanta Chakraborty, and Aloka Sinha. "Effect of CdSe/ZnS quantum dots doping on the ion transport behavior in nematic liquid crystal." Journal of Molecular Liquids 342 (2021): 117327.

DOI: 10.1016/j.molliq.2021.117327

Google Scholar

[42] Liu, Xuelian, et al. "Physical properties of liquid crystals doped with CsPbBr3 quantum dots." Liquid Crystals 48.10 (2021): 1357-1364

DOI: 10.1080/02678292.2020.1870009

Google Scholar

[43] Wang, Zhiwen, et al. "Coherent random lasing in colloidal quantum dot-doped polymer-dispersed liquid crystal with low threshold and high stability." The Journal of Physical Chemistry Letters 11.3 (2020): 767-774.

DOI: 10.1021/acs.jpclett.9b03409.s001

Google Scholar

[44] Cao, Mingxuan, et al. "Plasmonically Enhanced Colloidal Quantum Dot/Graphene Doped Polymer Random Lasers." Materials 15.6 (2022): 2213.

DOI: 10.3390/ma15062213

Google Scholar

[45] Vellaichamy, Mahendran, and Igor Muševič. "Optical gain and photostability of different laser dyes, quantum dots and quantum rods for liquid crystal micro lasers." Emerging Liquid Crystal Technologies XVII. Vol. 12023. SPIE, 2022.

DOI: 10.1117/12.2616092

Google Scholar