[1]
Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Emergence of colloidal quantumdot light-emitting technologies, Nat. Photonics 7 (2013) 13–23, https://doi.org/10. 1038/nphoton.2013.328.
DOI: 10.1038/nphoton.2012.328
Google Scholar
[2]
Chinky, Pankaj Kumar, Vandna Sharma, Praveen Malik, K.K. Raina, Nano particles induced vertical alignment of liquid crystal for display devices with augmented morphological and electro-optical characteristics, Journal of Molecular Structure, 1196 (2019) 866-873, https://doi.org/
DOI: 10.1016/j.molstruc.2019.06.045
Google Scholar
[3]
J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum dot- sensitized solar cell, Nanoscale 3 (2011) 4088–4093, https://doi.org/10.1039/ c1nr10867k.
DOI: 10.1039/c1nr10867k
Google Scholar
[4]
J.W. Stouwdam, R.A.J. Janssen, Red, green, and blue quantum dot LEDs with solution processable ZnOnanocrystal electron injection layers, J. Mater. Chem. 18 (2008)1889–1894.
DOI: 10.1039/b800028j
Google Scholar
[5]
Swapnil Doke, Eduardo Martinez-Teran, Ahmed A. El-Gendy, Prasun Ganguly, ShailajaMahamuni, Sustained multiferroicity in liquid crystal induced by core/shell quantum dots, Journal of Molecular Liquids, 288 (2019) 110836
DOI: 10.1016/j.molliq.2019.04.113
Google Scholar
[6]
J. Prakash, A. Chandran, A.M. Biradar, Scientific developments of liquid crystal-basedoptical memory: a review, Reports Prog. Phys. 80 (2017), 16601, https://doi.org/.
DOI: 10.1088/0034-4885/80/1/016601
Google Scholar
[7]
M. Geller, A.Marent, T. Nowozin, D. Bimberg, N. Aķay, N. Öncan, A write time of 6 nsfor quantum dot-based memory structures, Appl. Phys. Lett. 92 (2008), 092108.
DOI: 10.1063/1.2890731
Google Scholar
[8]
D. Loss, D.P. Divincenzo, Quantum computation with quantum dots, Phys. Rev. A 57(1998) 120–126.
DOI: 10.1103/PhysRevA.57.120
Google Scholar
[9]
B. Senyuk, J. S. Evans, P. J. Ackerman, T. Lee, P. Manna, L.Vigderman, E. R. Zubarev, J.V. de Lagemaat, and I. I. Smalyukh, Nano Lett. 12, 955 (2012).
DOI: 10.1021/nl204030t
Google Scholar
[10]
M. B. Pandey, T. Porenta, J. Brewer, A. Burkart, S. Copar, S. Zumer, and I. I. Smalyukh, Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring Phys. Rev. E 89, 060502(R) (2014).
DOI: 10.1103/PhysRevE.89.060502
Google Scholar
[11]
Santosh A. Mani, Jyoti R. Amare, Sameer U. Hadkar, Krishnakant G. Mishra, Madhavi S. Pradhan, Hind Al-Johani & Pradip B. Sarawade (2017) Investigations of optical and thermal response of polymer dispersed binary liquid crystals, Molecular Crystals and Liquid Crystals, 646:1, 183-193, https://doi.org/
DOI: 10.1080/15421406.2017.1287478
Google Scholar
[12]
U. B. Singh, R Dhar, A. S. Pandey, S. Kumar, R. Dabrowski, and M. B. Pandey, Electro-optical and dielectric properties of CdSe quantum dots and 6CHBT liquid crystals composites, AIP Advances 4, 117112 (2014);.
DOI: 10.1063/1.4901908
Google Scholar
[13]
P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford Science Publications, Oxford, 1993).
Google Scholar
[14]
S. Chandrasekhar, Liquid Crystals, 2nd ed. (Cambridge University Press, Cambridge, 1994).
Google Scholar
[15]
Shri Singh, Impact of Dispersion of Nanoscale Particles on the Properties of Nematic Liquid Crystals, Crystals 9 (2019), 475;.
DOI: 10.3390/cryst9090475
Google Scholar
[16]
Amit Sharma, Praveen Malik, Pankaj Kumar Electro-Optical and Dielectric Responses of ZnO Nanoparticles Doped Nematic Liquid Crystal in In-Plane Switching (IPS) Mode, Integrated Ferroelectrics, 202:1, 52-66(2019)
DOI: 10.1080/10584587.2019.1674824
Google Scholar
[17]
Fanindra Pati Pandey, Ayushi Rastogi, Shri Singh, Optical properties and zeta potential of carbon quantum dots (CQDs) dispersed nematic liquid crystal 4'- heptyl-4-biphenylcarbonitrile (7CB), Optical Materials, 105, 109849 (2020)
DOI: 10.1016/j.optmat.2020.109849
Google Scholar
[18]
Andrea L. Rodarte, Fredy Cisneros, Jason E. Hein, Sayantani Ghoshand Linda S. Hirst Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices Photonics 2, 855-864 (2015), https://doi.org /
DOI: 10.3390/photonics2030855
Google Scholar
[19]
Javad Mirzaei, Mitya Reznikov, Torsten Hegmann, Quantum dots as liquid crystal dopants Journal of Materials, Chemistry 22(42), (2012), 22350-22365 https://doi.org/
DOI: 10.1039/C2JM33274D
Google Scholar
[20]
CW Oh , EG Park, HG Park Enhanced electro-optical properties in titanium silicon oxide nanoparticle doped nematic liquid crystal system Surface and Coatings TechnologyVolume 360, 25 (2019), 50-55,https://doi.org /.
DOI: 10.1016/j.surfcoat.2019.01.014
Google Scholar
[21]
Krishnakant G. Mishra S.K. Dubey, Santosh A. Mani, Madhavi S. Pradhan, Comparative study of nanoparticles doped in Liquid Crystal Polymer System, Journal of Molecular Liquids 224 (2016) 668–671
DOI: 10.1016/j.molliq.2016.10.075
Google Scholar
[22]
Lee, W.K.; Hwang, H.J.; Chao, M.J.; Park, H.G.; Han, J.W.; Song, S.; Jang, J.H.; Seo, D.S. CIS–ZnS Quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale 2013, 5,193–198
DOI: 10.1039/c2nr32458j
Google Scholar
[23]
Cho, M.J.; Park, H.G.; Jeong, H.C.; Lee, J.W.; Jung, Y.H.; Kim, D.H.; Kim, J.W.; Lee, J.W.; Seo, D.S. Superior fast switching of liquid crystal devices using graphene quantum dots. Liq. Cryst. 2014, 41,761–767
DOI: 10.1080/02678292.2014.889233
Google Scholar
[24]
Rastogi, A.; Pathak, G.; Herman, J.; Srivastava, A.; Manohar, R. Cd1−XZnXS/ZnS core/shell quantum dots in nematic liquid crystals to improve material parameter for better performance of liquid crystal based devices. J. Mol. Liq. 2018, 255, 93–101
DOI: 10.1016/j.molliq.2018.01.132
Google Scholar
[25]
Santosh Mani, MadhaviPradhan, Archana, Sharma, Sameer Hadkar, Krishnakant Mishra, JyotiAmare, PradipSarawade.Effect of Ferroelectric Nanopowder on Electrical and Acoustical Properties of Cholesteric Liquid Crystal, Non-Metallic Material Science,02, 01, 2020
DOI: 10.30564/omms.v2i1.1821
Google Scholar
[26]
Singh, U.B.; Pandey, M.B.; Dhar, R.; Verma, R.; Kumar, S. Effect of dispersion of CdSe quantum dots on phase transition, electrical and electro-optical properties of 4PP4BO. Liq. Cryst. 2016, 43, 1075–1082
DOI: 10.1080/02678292.2016.1159344
Google Scholar
[27]
Tripathi, P.K.; Joshi, B.; Singh, S. Pristine and quantum dots dispersed nematic liquid crystal: Impact of dispersion and applied voltage on dielectric and electro-optical properties. Opt. Mater. 2017, 69, 61–68
DOI: 10.1016/j.optmat.2017.04.023
Google Scholar
[28]
Rastogi, A.; Agrahari, K.; Pathak, G.; Srivastava, A.; Herman, J.; Manohar, R. Study of an interesting physical mechanism of memory effect in nematic liquid crystal dispersed with quantum dots. Liq. Cryst. 46 (2019), 725–736
DOI: 10.1080/02678292.2018.1523477
Google Scholar
[29]
Rita A. Gharde, Madhavi S. Pradhan, Santosh A. Mani, Jyoti R. Amare. Electro-Optical Studies on Nanopowder Doped Liquid Crystal. International Journal of Chemical and Physical Sciences, NCRTSM, 2014, 3(Special Issue). ISSN: 2319-6602
Google Scholar
[30]
Shivani Pandey, Tripti Vimal, Dharmendra Pratap Singh, Swadesh Kumar Gupta, GovindPathak, RohitKatiyar& Rajiv Manohar.Core/shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarization coupling with dopant,Liquid Crystals,43:7(2016),980-993
DOI: 10.1080/02678292.2016.1155768
Google Scholar
[31]
Krishnakant G. Mishra Sheshmani K. Dubey and Santosh A. Mani Optical characterization of inorganic nanoparticles doped in polymer dispersed liquid crystal, Molecular Crystals and Liquid Crystals, 647:1 (2017), 244-252
DOI: 10.1080/15421406.2017.1289603
Google Scholar
[32]
Aradhana Roy, Kaushlendra Agrahari, Atul Srivastava and Rajiv Manohar, Plasmonic resonance instigated enhanced photoluminescence in quantum dotdispersednematic liquid crystal, Liquid Crystals, pp.1-7, 2018.
DOI: 10.1080/02678292.2018.1549283
Google Scholar
[33]
Linda S. Hirst, Jennifer Kirchhoff, Richard Inman and SayantaniGhosh, Quantum dot self-assembly in liquid crystal media, Proc. of SPIE Vol. 7618, 76180F1 to 76180F7, 2010.
DOI: 10.1117/12.848195
Google Scholar
[34]
Swadesh Kumar Gupta, Dharmendra Pratap Singh, Pankaj Kumar Tripathi, Rajiv Manohar ,Mahesh Varia, Laxmi K. SagarbandSandeep Kumar, CdSe quantum dot-dispersed DOBAMBC: an electro-optical study, Liquid Crystals, Vol. 40, No. 4, 528–533, 2013.
DOI: 10.1080/02678292.2012.761735
Google Scholar
[35]
Obey Koshy, Lakshmanan Subramanian, Sabu Thomas, Chapter 5 - Differential Scanning Calorimetry in Nanoscience and Nanotechnology, Editor(s): Sabu Thomas, Raju Thomas, Ajesh K. Zachariah, Raghvendra Kumar Mishra, In Micro and Nano Technologies, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Elsevier, 2017, Pages 109-122, ISBN 9780323461399.
DOI: 10.1016/b978-0-323-46139-9.00005-0
Google Scholar
[36]
Pooria Gill, Tahereh Tohidi Moghadam, and BijanRanjbar, Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience, Journal of Biomolecular Techniques vol.21, iss.4, p.167–193, 2010.
Google Scholar
[37]
A. Ibrahim, S. K. J. Al-An, Models of optical absorption in amorphous semiconductors at the absorption edge — A review and re-evaluation. Czechoslovak Journal of Physics, 44(8), 785–797, 1994.
DOI: 10.1007/bf01700645
Google Scholar
[38]
B. I. Lev and S. B. Chernyshuk, Supermolecular structures in nematic–cholesteric mixtures, Journal of Experimental and Theoratical Physics, Vol.8, No.2, pp.279-287, 1999.
DOI: 10.1134/1.558981
Google Scholar
[39]
Andrea L. Rodarte, Zachary S. Nuno, Blessing H. Cao, Ronald J. Pandolfi, Makiko T. Quint, Sayantani Ghosh, Jason E. Hein, and Linda S. Hirst, Tuning Quantum-Dot Organization in Liquid Crystals for Robust Photonic Applications, ChemPhys Chem 15(7), 1413-1421, 2014.
DOI: 10.1002/cphc.201301007
Google Scholar
[40]
Mani, Santosh, et al. "The influence of polymer on optical and thermal properties of nematic liquid crystals" Journal of Physics: Conference Series. Vol. 2070. No. 1. IOP Publishing, (2021)
Google Scholar
[41]
Rani, Aysha, Susanta Chakraborty, and Aloka Sinha. "Effect of CdSe/ZnS quantum dots doping on the ion transport behavior in nematic liquid crystal." Journal of Molecular Liquids 342 (2021): 117327.
DOI: 10.1016/j.molliq.2021.117327
Google Scholar
[42]
Liu, Xuelian, et al. "Physical properties of liquid crystals doped with CsPbBr3 quantum dots." Liquid Crystals 48.10 (2021): 1357-1364
DOI: 10.1080/02678292.2020.1870009
Google Scholar
[43]
Wang, Zhiwen, et al. "Coherent random lasing in colloidal quantum dot-doped polymer-dispersed liquid crystal with low threshold and high stability." The Journal of Physical Chemistry Letters 11.3 (2020): 767-774.
DOI: 10.1021/acs.jpclett.9b03409.s001
Google Scholar
[44]
Cao, Mingxuan, et al. "Plasmonically Enhanced Colloidal Quantum Dot/Graphene Doped Polymer Random Lasers." Materials 15.6 (2022): 2213.
DOI: 10.3390/ma15062213
Google Scholar
[45]
Vellaichamy, Mahendran, and Igor Muševič. "Optical gain and photostability of different laser dyes, quantum dots and quantum rods for liquid crystal micro lasers." Emerging Liquid Crystal Technologies XVII. Vol. 12023. SPIE, 2022.
DOI: 10.1117/12.2616092
Google Scholar