Compact Model Analysis for Low Voltage OFETs with Electrolytic Gate Dielectrics: Toward a Universal Model for Poly(3-Hexylthiophene) P3HT OFETs

Article Preview

Abstract:

The lightweight with flexibility and low-cost processing engineered the rapid growth of organic field-effect transistors (OFET) in the past three decades. Suitable compact models and parameter extraction methods are being developed to further the use of OFETs in integrated circuits, where stimulations are required to optimize the device performance. To simplify the parameter extraction, metaheuristic approaches are usually made, which otherwise is a cumbersome process. Following these, here investigations are made with the help of such a compact model to extract the operational parameters of P3HT (poly (3-hexylthiophene) based OFETs with electrolytic gate dielectrics using the genetic algorithm (GA) method. The result show that the compact model that was essentially developed in line with the successful models for inorganic material based FETs, can be used as an excellent framework for simulating low voltage OFETs made with both low and high mobility organic semiconductors. Mobility and threshold voltage calculated from the extracted parameters using GA for the two devices having mobility value differences of more than four orders are found to be nicely fitting with the experimental values. These results assume significance to the organic electronic industry as this facilitates the real-time circuit application of OFETs. KEYWORDS: Modeling, Low voltage OFET, Genetic algorithm, Ionic liquid, P3HT

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Kleemann, G. Schwartz, S. Zott, M. Baumann, M. Furno, Flex. Print. Electron. 5 (2020) 14009.

Google Scholar

[2] M. Mushrush, A. Facchetti, M. Lefenfeld, H.E. Katz, T.J. Marks, J. Am. Chem. Soc. 125 (2003) 9414–9423.

DOI: 10.1021/ja035143a

Google Scholar

[3] S.G. Kim, J. Jun, J.S. Lee, J. Jang, J. Mater. Chem. A 7 (2019) 8451–8459.

Google Scholar

[4] T. Minami, Y. Sasaki, T. Minamiki, P. Koutnik, P. Anzenbacher, S. Tokito, Chem. Commun. 51 (2015) 17666–17668.

DOI: 10.1039/c5cc07893h

Google Scholar

[5] S.P. Tiwari, K.A. Knauer, A. Dindar, B. Kippelen, Org. Electron. 13 (2012) 18–22.

Google Scholar

[6] S. Mijalković, D. Green, A. Nejim, G. Whiting, A. Rankov, E. Smith, J. Halls, C. Murphy, "2008 26th Int. Conf. Microelectron. Proceedings, MIEL 2008" (2008) 469–476.

DOI: 10.1109/icmel.2008.4559324

Google Scholar

[7] K. Joardar, K.K. Gullapalli, C.C. McAndrew, M.E. Burnham, A. Wild, IEEE Trans. Electron Devices 45 (1998) 134–148.

DOI: 10.1109/16.658823

Google Scholar

[8] M. Estrada, A. Cerdeira, J. Puigdollers, L. Reséndiz, J. Pallares, L.F. Marsal, C. Voz, B. Iñiguez, Solid. State. Electron. 49 (2005) 1009–1016.

DOI: 10.1016/j.sse.2005.02.004

Google Scholar

[9] C.H. Kim, Y. Bonnassieux, G. Horowitz, IEEE Trans. Electron Devices 61 (2013) 278–287.

Google Scholar

[10] T. Sakurai, B. Lin, A.R. Newton, IEEE Trans. Comput. Des. Integr. Circuits Syst. 11 (1992) 228–234.

Google Scholar

[11] Y.H. Hu, S. Pan, IEEE Trans. Comput. Des. Integr. Circuits Syst. 12 (1993) 1481–1487.

Google Scholar

[12] T. Bendib, F. Djeffal, IEEE Trans. Electron Devices 58 (2011) 3743–3750.

Google Scholar

[13] F. Djeffal, T. Bendib, Microelectronics J. 42 (2011) 661–666.

Google Scholar

[14] T. Bendib, F. Djeffal, D. Arar, J. Comput. Electron. 10 (2011) 210–215.

Google Scholar

[15] S. Ono, N. Minder, Z. Chen, A. Facchetti, A.F. Morpurgo, Appl. Phys. Lett. 97 (2010) 95–98.

Google Scholar

[16] C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, Phys. Rev. Lett. 91 (2003) 1–4.

Google Scholar

[17] M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 129 (2007) 6599–6607.

Google Scholar

[18] Y. Xia, J.H. Cho, J. Lee, P.P. Ruden, C.D. Frisbie, Adv. Mater. 21 (2009) 2174–2179.

Google Scholar

[19] S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, J. Phys. Chem. Ref. Data 35 (2006) 1475–1517.

Google Scholar

[20] V.O. Turin, A. V. Sedov, G.I. Zebrev, B. Iñiguez, M.S. Shur, Int. Conf. Micro- Nano-Electronics 2009 7521 (2009) 480–488.

Google Scholar

[21] B. Iñiguez, R. Picos, D. Veksler, A. Koudymov, M.S. Shur, T. Ytterdal, W. Jackson, Solid. State. Electron. 52 (2008) 400–405.

DOI: 10.1016/j.sse.2007.10.027

Google Scholar

[22] M. Shur, M. Hack, J. Appl. Phys. 55 (1984) 3831–3842.

Google Scholar

[23] A. Cerdeira, M. Estrada, R. Garcı́a, A. Ortiz-Conde, F.J. Garcı́a Sánchez, Solid. State. Electron. 45 (2001) 1077–1080.

DOI: 10.1016/s0038-1101(01)00143-5

Google Scholar

[24] I. Benacer, Z. Dibi, Int. J. Autom. Comput. 13 (2016) 382–391.

Google Scholar

[25] A. Rolland, J. Richard, J.P. Kleider, D. Mencaraglia, J. Electrochem. Soc. 140 (1993) 3679–3683.

Google Scholar

[26] J.H. Holland, others, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT press, 1992.

DOI: 10.7551/mitpress/1090.001.0001

Google Scholar

[27] N. Akkan, M. Altun, H. Sedef, IEEE Access 7 (2019) 180438–180450.

DOI: 10.1109/access.2019.2959474

Google Scholar

[28] L. Kergoat, L. Herlogsson, D. Braga, B. Piro, M.C. Pham, X. Crispin, M. Berggren, G. Horowitz, Adv. Mater. 22 (2010) 2565–2569.

DOI: 10.1002/adma.200904163

Google Scholar

[29] Y. Yadav, S.K. Ghosh, S.P. Singh, ACS Appl. Electron. Mater. 3 (2021) 1496–1504.

Google Scholar

[30] S.M. Sze, Y. Li, K.K. Ng, Physics of Semiconductor Devices, John wiley \& sons, 2021.

Google Scholar