Principles of Logic Design with Nanoscale Thin Film Memristive Systems for High Performance Digital Circuit Applications

Article Preview

Abstract:

The characteristic pinched hysteresis behavior of memristors has been reported by stacks of a variety of materials. This paper aims to examine the principles of logic design using such two terminal memristive systems for high performance digital circuit applications. As against logic design with standard CMOS, the benefits of logic design with memristors have been stated. The realization and operation of memristor based AND and OR hybrid logic gates obtained by integrating memristors with standard CMOS logic have been discussed. The IMPLY and MAGIC logic families have been demonstrated by covering MAGIC NOR and NAND logic gate implementation with MAGIC NOR in detail. A qualitative comparison has been drawn towards the end of the paper to conclude on the suitability and application space for each of the logic families studied in this paper. This work also describes the hybrid CMOS-memristive logic family known as MRL (Memristor Ratioed Logic). With the addition of CMOS inverters, this logic family's OR and AND logic gates, which are based on memristive components, are given a full logic structure and signal restoration. The MRL family, in contrast to earlier memristor-based logic families, is compatible with conventional CMOS logic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-31

Citation:

Online since:

April 2023

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chua LO, "Memristor—The Missing Circuit Element", IEEE Trans Circuit Theory, Vol. 18, issue 5, pp.507-519, Sept. 1971.

DOI: 10.1109/tct.1971.1083337

Google Scholar

[2] Chua LO, Kang SM, "Memristive Devices and Systems", Proc IEEE Vol. 64, issue 2, p.209–223, Feb. 1976.

Google Scholar

[3] Strukov DB, Snider GS, Stewart DR, Williams RS, "The missing memristor found", Nature 453: 80–83, May 2008.

DOI: 10.1038/nature06932

Google Scholar

[4] R. S. Williams, "How We Found the Missing Memristor," IEEE Spectrum, Vol. 45, no. 12, pp.28-35, Dec. 2008.

DOI: 10.1109/mspec.2008.4687366

Google Scholar

[5] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, et al., "Switching dynamics in titanium dioxide memristive devices", Journal of Applied Physics, vol. 106, no. 7, p.074508, 2009.

DOI: 10.1063/1.3236506

Google Scholar

[6] Chua, L, "Resistance switching memories are memristors", Appl. Phys. A, Vol. 102, p.765–783, Jan. 2011.

DOI: 10.1007/s00339-011-6264-9

Google Scholar

[7] Y. N. Joglekar and S. J. Wolf, "The elusive memristor: Properties of basic electrical circuits", European Journal of Physics, vol. 30, no. 4, pp.661-675, 2009.

DOI: 10.1088/0143-0807/30/4/001

Google Scholar

[8] Chris Yakopcic, Tarek M. Taha, Guru Subramanyam and Robinson E. Pino, "Generalized Memristive Device SPICE Model and its Application in Circuit Design", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE), vol. 32, no. 8, pp.1201-1214, August 2013.

DOI: 10.1109/tcad.2013.2252057

Google Scholar

[9] Joel Molina-Reyes, Luis Hernandez-Martinez, "Understanding the Resistive Switching Phenomena of Stacked Al/Al2O3/Al Thin Films from the Dynamics of Conductive Filaments", Complexity, vol. 2017, 2017.

DOI: 10.1155/2017/8263904

Google Scholar

[10] Sanghyeon Choi, Seonggil Ham and Gunuk Wang, "Memristor Synapses for Neuromorphic Computing, Memristors - Circuits and Applications of Memristor Devices", Alex James, IntechOpen, DOI: 10.5772/intechopen.85301, March 2019.

DOI: 10.5772/intechopen.85301

Google Scholar

[11] Burr GW, Shelby RM, Sebastian A, et al, "Neuromorphic computing using non-volatile memory", Adv Phys X, Vol. 2, issue 1, p.89–124, 2017.

Google Scholar

[12] M. Hu et al., "Memristor crossbar-based neuromorphic computing system: A case study", IEEE transactions on neural networks and learning systems, Vol. 25, pp.1864-1878, 2014.

DOI: 10.1109/tnnls.2013.2296777

Google Scholar

[13] Y. Zhao et al., "A compact model for drift and diffusion memristor applied in neuron circuits design", IEEE Trans. Electron Devices, Vol. 65, no. 10, pp.4290-4296, Oct. 2018.

DOI: 10.1109/ted.2018.2865225

Google Scholar

[14] Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki Mazumder, and Wei Lu, "Nanoscale Memristor Device as Synapse in Neuromorphic Systems", Nano Letters, Vol. 10, no. 4, pp.1297-1301, (2010)

DOI: 10.1021/nl904092h

Google Scholar

[15] S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, "TEAM: Threshold adaptive memristor model", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 60, no. 1, pp.211-221, Jan. 2013.

DOI: 10.1109/tcsi.2012.2215714

Google Scholar

[16] S. Kvatinsky, M. Ramadan, E. G. Friedman and A. Kolodny, "VTEAM: A general model for voltage-controlled memristors", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 62, no. 8, pp.786-790, Aug. 2015.

DOI: 10.1109/tcsii.2015.2433536

Google Scholar

[17] Z. Jiang et al., "A Compact Model for Metal–Oxide Resistive Random Access Memory With Experiment Verification," in IEEE Transactions on Electron Devices, vol. 63, no. 5, pp.1884-1892, May 2016.

DOI: 10.1109/ted.2016.2545412

Google Scholar

[18] D. Biolek, Z. Kolka, V. Biolkova and Z. Biolek, "Memristor models for SPICE simulation of extremely large memristive networks", Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp.389-392, May 2016.

DOI: 10.1109/iscas.2016.7527252

Google Scholar

[19] Biolek D, Biolek Z, Biolková V., "Interpreting area of pinched memristor hysteresis loop", Electron Lett, Vol. 50, no. 2, p.74–75, 2014.

DOI: 10.1049/el.2013.3108

Google Scholar

[20] Biolek D., Biolek Z., Biolková V., "Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be 'selfcrossing'", Electron. Lett., Vol. 47, no. 25, p.1385 – 1387, 2011.

DOI: 10.1049/el.2011.2913

Google Scholar

[21] Chakraverty M, Ramakrishnan VN, "A Qualitative Study of Materials and Fabrication Methodologies for Two Terminal Memristive Systems" Materials Today: Proceedings. Elsevier Ltd, p.1628–1637, 2019.

DOI: 10.1016/j.matpr.2020.02.160

Google Scholar

[22] F. Gul, "Circuit Implementation of Nano-Scale TiO2 Memristor Using Only Metal-Oxide-Semiconductor Transistors," in IEEE Electron Device Letters, vol. 40, no. 4, pp.643-646, April 2019.

DOI: 10.1109/led.2019.2899889

Google Scholar

[23] R. Berdan, C. Lim, A. Khiat, C. Papavassiliou and T. Prodromakis, "A Memristor SPICE Model Accounting for Volatile Characteristics of Practical ReRAM," in IEEE Electron Device Letters, vol. 35, no. 1, pp.135-137, Jan. 2014.

DOI: 10.1109/led.2013.2291158

Google Scholar

[24] T. Prodromakis, B. P. Peh, C. Papavassiliou and C. Toumazou, "A Versatile Memristor Model with Nonlinear Dopant Kinetics," in IEEE Transactions on Electron Devices, vol. 58, no. 9, pp.3099-3105, Sept. 2011.

DOI: 10.1109/ted.2011.2158004

Google Scholar

[25] Chris Yakopcic, Tarek M. Taha, Guru Subramanyam, Robinson E. Pino and Stanley Rogers, "A Memristor Device Model", IEEE Electron Device Letters, Vol. 32, no. 10, pp.1436-1438, October 2011.

DOI: 10.1109/led.2011.2163292

Google Scholar

[26] Jinxiang Zha, He Huang, Tingwen Huang, Jinde Cao, Ahmed Alsaedi and Fuad E. Alsaadi, "A General Memristor Model and its applications in programmable analog circuits", Neurocomputing, vol. 267, pp.134-140, 2017.

DOI: 10.1016/j.neucom.2017.04.057

Google Scholar

[27] J. J. Yang, M. D. Pickett, X. Li, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevice", Nature Nanotechnology, page 429-433, 2008.

DOI: 10.1038/nnano.2008.160

Google Scholar

[28] R. S. Williams, and D. B. Strukov, "Exponential ionic drift: Fast switching and low volatility of thin- film memristor", Applied Physics A. Material Sci. Process, page 515-519, 2009.

DOI: 10.1007/s00339-008-4975-3

Google Scholar

[29] Mayank Chakraverty, VN Ramakrishnan, "Temperature Dependent Carrier Transport in Hydrogenated Amorphous Semiconductors for Thin Film Memristive Applications", Materials Science Forum, Vol. 1048, pp.182-188, Trans Tech Publications, Switzerland, Jan 2022, ISSN: 1662-9752.

DOI: 10.4028/www.scientific.net/msf.1048.182

Google Scholar

[30] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart and R. S. Williams, "Memristive Switches Enable 'Stateful' Logic Operations via Material Implication", Nature, vol. 464, pp.873-876, April 2010.

DOI: 10.1038/nature08940

Google Scholar

[31] E. Lehtonen, J. H. Poikonen and M. Laiho, "Two Memristors Suffice to Compute All Boolean Functions", Electronics Letters, vol. 46, no. 3, pp.239-240, February 2010.

DOI: 10.1049/el.2010.3407

Google Scholar

[32] Y. V. Pershin and M. Di Ventra, "Practical Approach to Programmable Analog Circuits with Memristors", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8, pp.1857-1864, August 2010.

DOI: 10.1109/tcsi.2009.2038539

Google Scholar

[33] D. B. Strukov and K. K. Likharev, "CMOL FPGA: a Reconfigurable Architecture for Hybrid Digital Circuits with Two- Terminal Nanodevices", Nanotechnology, vol. 16, no. 6, pp.888-900, June 2005.

DOI: 10.1088/0957-4484/16/6/045

Google Scholar

[34] G. S. Rose and M. R. Stan, "A Programmable Majority Logic Array Using Molecular Scale Electronics", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 11, pp.2380-2390, November 2007.

DOI: 10.1109/tcsi.2007.907860

Google Scholar

[35] Y. V. Pershin and M. Di Ventra, "Neuromorphic digital and quantum computation with memory circuit elements", Proc. IEEE, vol. 100, no. 6, pp.2071-2080, Jun. 2012.

DOI: 10.1109/jproc.2011.2166369

Google Scholar

[36] S. Shin, K. Kim and S.-M. Kang, "Reconfigurable stateful NOR gate for large-scale logic-array integrations", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 58, no. 7, pp.442-446, Jul. 2011.

DOI: 10.1109/tcsii.2011.2158253

Google Scholar

[37] J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices", Nature Nanotechnol., vol. 3, pp.429-433, Jul. 2008.

DOI: 10.1038/nnano.2008.160

Google Scholar

[38] S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, "Memristor-based material implication (IMPLY) logic: Design principles and methodologies", IEEE Trans. Very Large Scale Integr. (VLSI), vol. 22, no. 10, pp.2054-2066, Oct. 2013.

DOI: 10.1109/tvlsi.2013.2282132

Google Scholar

[39] E. Lehtonen and M. Laiho, "Stateful implication logic with memristors", Proc. IEEE/ACM Int. Symp. Nanosc. Archit., pp.33-36, Jul. 2009.

DOI: 10.1109/nanoarch.2009.5226356

Google Scholar

[40] E. Linn, R. Rosezin, C. Kügeler and R. Waser, "Complementary resistive switches for passive nanocrossbar memories", Nature Mater., vol. 9, no. 5, pp.403-406, Apr. 2010.

DOI: 10.1038/nmat2748

Google Scholar

[41] S. Kvatinsky et al., "MAGIC—Memristor-Aided Logic", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp.895-899, Nov. 2014.

DOI: 10.1109/tcsii.2014.2357292

Google Scholar

[42] N. Talati, S. Gupta, P. Mane and S. Kvatinsky, "Logic Design Within Memristive Memories Using Memristor-Aided loGIC (MAGIC)", IEEE Transactions on Nanotechnology, vol. 15, no. 4, pp.635-650, July 2016.

DOI: 10.1109/tnano.2016.2570248

Google Scholar

[43] S. Kvatinsky et al., "MRL—Memristor ratioed logic", Proc. Int. Cellular Nanoscale Netw. Appl., pp.1-6.

Google Scholar

[44] J. J. Yang, D. B. Strukov and D. R. Stewart, "Memristive devices for computing", Nat. Nanotechnol., vol. 8, pp.13-24, Jan. 2013.

Google Scholar

[45] L. Qu, X. Cui, X. Xu, X. Cui and Y. Ma, "The Multi-input MRL Logic Gate and Its Application", IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp.1-2, June. 2019.

DOI: 10.1109/edssc.2019.8753985

Google Scholar