[1]
Chua LO, "Memristor—The Missing Circuit Element", IEEE Trans Circuit Theory, Vol. 18, issue 5, pp.507-519, Sept. 1971.
DOI: 10.1109/tct.1971.1083337
Google Scholar
[2]
Chua LO, Kang SM, "Memristive Devices and Systems", Proc IEEE Vol. 64, issue 2, p.209–223, Feb. 1976.
Google Scholar
[3]
Strukov DB, Snider GS, Stewart DR, Williams RS, "The missing memristor found", Nature 453: 80–83, May 2008.
DOI: 10.1038/nature06932
Google Scholar
[4]
R. S. Williams, "How We Found the Missing Memristor," IEEE Spectrum, Vol. 45, no. 12, pp.28-35, Dec. 2008.
DOI: 10.1109/mspec.2008.4687366
Google Scholar
[5]
M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, et al., "Switching dynamics in titanium dioxide memristive devices", Journal of Applied Physics, vol. 106, no. 7, p.074508, 2009.
DOI: 10.1063/1.3236506
Google Scholar
[6]
Chua, L, "Resistance switching memories are memristors", Appl. Phys. A, Vol. 102, p.765–783, Jan. 2011.
DOI: 10.1007/s00339-011-6264-9
Google Scholar
[7]
Y. N. Joglekar and S. J. Wolf, "The elusive memristor: Properties of basic electrical circuits", European Journal of Physics, vol. 30, no. 4, pp.661-675, 2009.
DOI: 10.1088/0143-0807/30/4/001
Google Scholar
[8]
Chris Yakopcic, Tarek M. Taha, Guru Subramanyam and Robinson E. Pino, "Generalized Memristive Device SPICE Model and its Application in Circuit Design", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE), vol. 32, no. 8, pp.1201-1214, August 2013.
DOI: 10.1109/tcad.2013.2252057
Google Scholar
[9]
Joel Molina-Reyes, Luis Hernandez-Martinez, "Understanding the Resistive Switching Phenomena of Stacked Al/Al2O3/Al Thin Films from the Dynamics of Conductive Filaments", Complexity, vol. 2017, 2017.
DOI: 10.1155/2017/8263904
Google Scholar
[10]
Sanghyeon Choi, Seonggil Ham and Gunuk Wang, "Memristor Synapses for Neuromorphic Computing, Memristors - Circuits and Applications of Memristor Devices", Alex James, IntechOpen, DOI: 10.5772/intechopen.85301, March 2019.
DOI: 10.5772/intechopen.85301
Google Scholar
[11]
Burr GW, Shelby RM, Sebastian A, et al, "Neuromorphic computing using non-volatile memory", Adv Phys X, Vol. 2, issue 1, p.89–124, 2017.
Google Scholar
[12]
M. Hu et al., "Memristor crossbar-based neuromorphic computing system: A case study", IEEE transactions on neural networks and learning systems, Vol. 25, pp.1864-1878, 2014.
DOI: 10.1109/tnnls.2013.2296777
Google Scholar
[13]
Y. Zhao et al., "A compact model for drift and diffusion memristor applied in neuron circuits design", IEEE Trans. Electron Devices, Vol. 65, no. 10, pp.4290-4296, Oct. 2018.
DOI: 10.1109/ted.2018.2865225
Google Scholar
[14]
Sung Hyun Jo, Ting Chang, Idongesit Ebong, Bhavitavya B. Bhadviya, Pinaki Mazumder, and Wei Lu, "Nanoscale Memristor Device as Synapse in Neuromorphic Systems", Nano Letters, Vol. 10, no. 4, pp.1297-1301, (2010)
DOI: 10.1021/nl904092h
Google Scholar
[15]
S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, "TEAM: Threshold adaptive memristor model", IEEE Trans. Circuits Syst. I Reg. Papers, vol. 60, no. 1, pp.211-221, Jan. 2013.
DOI: 10.1109/tcsi.2012.2215714
Google Scholar
[16]
S. Kvatinsky, M. Ramadan, E. G. Friedman and A. Kolodny, "VTEAM: A general model for voltage-controlled memristors", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 62, no. 8, pp.786-790, Aug. 2015.
DOI: 10.1109/tcsii.2015.2433536
Google Scholar
[17]
Z. Jiang et al., "A Compact Model for Metal–Oxide Resistive Random Access Memory With Experiment Verification," in IEEE Transactions on Electron Devices, vol. 63, no. 5, pp.1884-1892, May 2016.
DOI: 10.1109/ted.2016.2545412
Google Scholar
[18]
D. Biolek, Z. Kolka, V. Biolkova and Z. Biolek, "Memristor models for SPICE simulation of extremely large memristive networks", Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), pp.389-392, May 2016.
DOI: 10.1109/iscas.2016.7527252
Google Scholar
[19]
Biolek D, Biolek Z, Biolková V., "Interpreting area of pinched memristor hysteresis loop", Electron Lett, Vol. 50, no. 2, p.74–75, 2014.
DOI: 10.1049/el.2013.3108
Google Scholar
[20]
Biolek D., Biolek Z., Biolková V., "Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be 'selfcrossing'", Electron. Lett., Vol. 47, no. 25, p.1385 – 1387, 2011.
DOI: 10.1049/el.2011.2913
Google Scholar
[21]
Chakraverty M, Ramakrishnan VN, "A Qualitative Study of Materials and Fabrication Methodologies for Two Terminal Memristive Systems" Materials Today: Proceedings. Elsevier Ltd, p.1628–1637, 2019.
DOI: 10.1016/j.matpr.2020.02.160
Google Scholar
[22]
F. Gul, "Circuit Implementation of Nano-Scale TiO2 Memristor Using Only Metal-Oxide-Semiconductor Transistors," in IEEE Electron Device Letters, vol. 40, no. 4, pp.643-646, April 2019.
DOI: 10.1109/led.2019.2899889
Google Scholar
[23]
R. Berdan, C. Lim, A. Khiat, C. Papavassiliou and T. Prodromakis, "A Memristor SPICE Model Accounting for Volatile Characteristics of Practical ReRAM," in IEEE Electron Device Letters, vol. 35, no. 1, pp.135-137, Jan. 2014.
DOI: 10.1109/led.2013.2291158
Google Scholar
[24]
T. Prodromakis, B. P. Peh, C. Papavassiliou and C. Toumazou, "A Versatile Memristor Model with Nonlinear Dopant Kinetics," in IEEE Transactions on Electron Devices, vol. 58, no. 9, pp.3099-3105, Sept. 2011.
DOI: 10.1109/ted.2011.2158004
Google Scholar
[25]
Chris Yakopcic, Tarek M. Taha, Guru Subramanyam, Robinson E. Pino and Stanley Rogers, "A Memristor Device Model", IEEE Electron Device Letters, Vol. 32, no. 10, pp.1436-1438, October 2011.
DOI: 10.1109/led.2011.2163292
Google Scholar
[26]
Jinxiang Zha, He Huang, Tingwen Huang, Jinde Cao, Ahmed Alsaedi and Fuad E. Alsaadi, "A General Memristor Model and its applications in programmable analog circuits", Neurocomputing, vol. 267, pp.134-140, 2017.
DOI: 10.1016/j.neucom.2017.04.057
Google Scholar
[27]
J. J. Yang, M. D. Pickett, X. Li, D. R. Stewart, and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevice", Nature Nanotechnology, page 429-433, 2008.
DOI: 10.1038/nnano.2008.160
Google Scholar
[28]
R. S. Williams, and D. B. Strukov, "Exponential ionic drift: Fast switching and low volatility of thin- film memristor", Applied Physics A. Material Sci. Process, page 515-519, 2009.
DOI: 10.1007/s00339-008-4975-3
Google Scholar
[29]
Mayank Chakraverty, VN Ramakrishnan, "Temperature Dependent Carrier Transport in Hydrogenated Amorphous Semiconductors for Thin Film Memristive Applications", Materials Science Forum, Vol. 1048, pp.182-188, Trans Tech Publications, Switzerland, Jan 2022, ISSN: 1662-9752.
DOI: 10.4028/www.scientific.net/msf.1048.182
Google Scholar
[30]
J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart and R. S. Williams, "Memristive Switches Enable 'Stateful' Logic Operations via Material Implication", Nature, vol. 464, pp.873-876, April 2010.
DOI: 10.1038/nature08940
Google Scholar
[31]
E. Lehtonen, J. H. Poikonen and M. Laiho, "Two Memristors Suffice to Compute All Boolean Functions", Electronics Letters, vol. 46, no. 3, pp.239-240, February 2010.
DOI: 10.1049/el.2010.3407
Google Scholar
[32]
Y. V. Pershin and M. Di Ventra, "Practical Approach to Programmable Analog Circuits with Memristors", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 8, pp.1857-1864, August 2010.
DOI: 10.1109/tcsi.2009.2038539
Google Scholar
[33]
D. B. Strukov and K. K. Likharev, "CMOL FPGA: a Reconfigurable Architecture for Hybrid Digital Circuits with Two- Terminal Nanodevices", Nanotechnology, vol. 16, no. 6, pp.888-900, June 2005.
DOI: 10.1088/0957-4484/16/6/045
Google Scholar
[34]
G. S. Rose and M. R. Stan, "A Programmable Majority Logic Array Using Molecular Scale Electronics", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 11, pp.2380-2390, November 2007.
DOI: 10.1109/tcsi.2007.907860
Google Scholar
[35]
Y. V. Pershin and M. Di Ventra, "Neuromorphic digital and quantum computation with memory circuit elements", Proc. IEEE, vol. 100, no. 6, pp.2071-2080, Jun. 2012.
DOI: 10.1109/jproc.2011.2166369
Google Scholar
[36]
S. Shin, K. Kim and S.-M. Kang, "Reconfigurable stateful NOR gate for large-scale logic-array integrations", IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 58, no. 7, pp.442-446, Jul. 2011.
DOI: 10.1109/tcsii.2011.2158253
Google Scholar
[37]
J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart and R. S. Williams, "Memristive switching mechanism for metal/oxide/metal nanodevices", Nature Nanotechnol., vol. 3, pp.429-433, Jul. 2008.
DOI: 10.1038/nnano.2008.160
Google Scholar
[38]
S. Kvatinsky, E. G. Friedman, A. Kolodny and U. C. Weiser, "Memristor-based material implication (IMPLY) logic: Design principles and methodologies", IEEE Trans. Very Large Scale Integr. (VLSI), vol. 22, no. 10, pp.2054-2066, Oct. 2013.
DOI: 10.1109/tvlsi.2013.2282132
Google Scholar
[39]
E. Lehtonen and M. Laiho, "Stateful implication logic with memristors", Proc. IEEE/ACM Int. Symp. Nanosc. Archit., pp.33-36, Jul. 2009.
DOI: 10.1109/nanoarch.2009.5226356
Google Scholar
[40]
E. Linn, R. Rosezin, C. Kügeler and R. Waser, "Complementary resistive switches for passive nanocrossbar memories", Nature Mater., vol. 9, no. 5, pp.403-406, Apr. 2010.
DOI: 10.1038/nmat2748
Google Scholar
[41]
S. Kvatinsky et al., "MAGIC—Memristor-Aided Logic", IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp.895-899, Nov. 2014.
DOI: 10.1109/tcsii.2014.2357292
Google Scholar
[42]
N. Talati, S. Gupta, P. Mane and S. Kvatinsky, "Logic Design Within Memristive Memories Using Memristor-Aided loGIC (MAGIC)", IEEE Transactions on Nanotechnology, vol. 15, no. 4, pp.635-650, July 2016.
DOI: 10.1109/tnano.2016.2570248
Google Scholar
[43]
S. Kvatinsky et al., "MRL—Memristor ratioed logic", Proc. Int. Cellular Nanoscale Netw. Appl., pp.1-6.
Google Scholar
[44]
J. J. Yang, D. B. Strukov and D. R. Stewart, "Memristive devices for computing", Nat. Nanotechnol., vol. 8, pp.13-24, Jan. 2013.
Google Scholar
[45]
L. Qu, X. Cui, X. Xu, X. Cui and Y. Ma, "The Multi-input MRL Logic Gate and Its Application", IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp.1-2, June. 2019.
DOI: 10.1109/edssc.2019.8753985
Google Scholar