Structural, Thermal, and Magnetic Characterization Analysis of Synthesized Fe3O4-Spinel Ferrite Nanoparticles

Article Preview

Abstract:

Spinel ferrite nanoparticles are potential candidates for multiple biomedical applications. Spinel ferrite nanoparticles have been studied extensively for understanding physical, chemical, electro-optical as well as magnetic properties which are fascinating due to cationic distributions corresponding to tetrahedral sites and octahedral sites in a cubic phase. Biocompatibility and large magnetic moment are basic requirements in spinel ferrite nanoparticles for efficient functioning in specific application purpose. Fe3O4 (magnetite) is an important member of spinel ferrite group with high chemical stability and ferrimagetic material property at nanodimension. Superparamagnetic state and biocompatibility of magnetite (Fe3O4) spinel ferrite nanoparticle has already been proven. Spinel ferrite magnetite nanoparticles have been developed based on precipitation of iron oxide using ferric and ferrous ions at the ratio 2:1 in alkaline media at and above 100°C. The experimental parameters have been set to synthesize pure and uniformly sized magnetite nanoparticles. No other phases of iron oxides were detected other than magnetite spinel phase in the XRD result. The average crystal size has been determined from XRD peak broadening. Absorption spectra were investigated using UV-Vis Spectrometer and FTIR. Thermal and magnetic measurements were carried out Digital Scanning Calorimeter and SQUID Magnetometer. One sample of the prepared nanoparticles with polymer coating of polyvinyl alcohol has been studied for superparamagnetic nature. Superparamagnetic particles show saturation value of magnetization 51.26 emu/g at 100 K. ZFC-FC curves for two samples with polymer coating of polyvinyl alcohol and hydroxy-propyl methyl cellulose have also been studied. Keywords: Spinel Ferrite, Magnetite, Ferrimagnetism, Transition metal oxide, Superparamagnetism. Statements and declarations Competing Interests: The authors declare that there is no competing financial interest that are related directly or indirectly to the reported work in this paper. Conflict of interest: There is no conflict of interest. Acknowledgements The Authors are grateful to IISER Bhopal, CRF facility for providing instrumentation facility to characterize magnetic properties. We acknowledge thanks to Lovely Professional University for providing us necessary characterization technique for the XRD analysis and thermal analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-98

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Wesley, M.A.N. Davino, M.F. Rafael, B.A.F. Pierre, Superparamagnetic Nanoparticles with Spinel Structure: A Review of Synthesis and Biomedical Applications, Solid State Phenom. 241 (2016) 139-76.

Google Scholar

[2] S.M. Dadfar, D. Camozzi, M. Darguzyte, K. Roemhild, P. Varvara, J. Metselaar et al. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance, J. Nanobiotechnol. 18 (2020) 22.

DOI: 10.1186/s12951-020-0580-1

Google Scholar

[3] D.A. Guzman-Rocha, T. Cordova-Fraga, J.J. Bernal-Alvarado, Z. Lopez, F.A. Cholico, L.H. Quintero et al. A ferrofluid with high specific absorption rate prepared in a single step using a biopolymer, Materials 15 (2022) 788.

DOI: 10.3390/ma15030788

Google Scholar

[4] S.H. Xuan, F. Wang, J.M.Y. Lai, K.W.Y. Sham, Y.X.J. Wang, S.F. Lee, J.C. Yu, C.H.K. Cheng, K.C.F. Leung, Synthesis of Biocompatible, Mesoporous Fe3O4 Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications, ACS Appl. Mater. Interface. 3 (2011) 237-44.

DOI: 10.1021/am1012358

Google Scholar

[5] E. Katz, Synthesis, properties and Applications of Magnetic Nanoparticles and nanowires-A brief introduction, Magnetochemistry 5 (2019) 61.

DOI: 10.3390/magnetochemistry5040061

Google Scholar

[6] X. Liu, Y. Zhang, Y. Wang, W. Zhu, G. Li, X. Ma et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy, Theranostics 10 (2020) 3793-815.

DOI: 10.7150/thno.40805

Google Scholar

[7] K. Wu, D.Q. Su, J.M. Liu, R. Saha, J.P. Wang, Magnetic nanoparticles in nanomedicine: A review of recent advances, Nanotechnol. 30 (2019) 502003.

DOI: 10.1088/1361-6528/ab4241

Google Scholar

[8] G.M. Ziarani, M. Malmir, N. Lashgari, A. Badiei, The role of hollow magnetic nanoparticles in drug delivery, RSC Adv. 9 (2019) 25094-106.

DOI: 10.1039/c9ra01589b

Google Scholar

[9] A. Hssaini, M. Belaiche, M. Elansary, C.A. Ferdi, M. Yassine, Magnetic and structural properties of novel–coated Ni0.5Co0.5Fe1.6Gd0.2Mo0.1Sm0.1O4 spinel ferrite nanomaterials: experimental and theoretical investigations, J. Supercond. Nov. Magn. (2022).

DOI: 10.1007/s10948-022-06307-4

Google Scholar

[10] L. Neel, Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites, Ann. Geophys. 5 (1949) 99-136.

Google Scholar

[11] V.G. Harris, Modern Microwave Ferrites, IEEE Trans. Magn. 48 (2012) 1075-104.

Google Scholar

[12] C. Walcott, J.L. Gould, J.L. Kirschvink, Pigeons have magnets, Science 205 (1979) 1027-29.

DOI: 10.1126/science.472725

Google Scholar

[13] J.L. Gould, J.L. Kirschvink, K.S. Deffeyes, Bees have magnetic remanence, Science 201 (1978) 1026-28.

DOI: 10.1126/science.201.4360.1026

Google Scholar

[14] R.B. Frankel, R.P. Blakemore, R.S. Wolfe, Magnetite in freshwater magnetotactic bacteria, Science 203 (1979)1355-56.

DOI: 10.1126/science.203.4387.1355

Google Scholar

[15] W.H. Bragg, The structure of magnetite and the spinels, Nature 95 (1915) 561.

Google Scholar

[16] W. Galvao, R. Freire, T. Ribeiro, I. Vasconcelos, L. Costa, V. Freire, F. Sales, J. Denardin, P. Fechine, Cubic Superparamagnetic nanoparticles of NiFe2O4 via fast microwave heating, J. Nano. Res. 16 (2014) 1-10.

DOI: 10.1007/s11051-014-2803-6

Google Scholar

[17] B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, 2009.

Google Scholar

[18] L. Neel, Proprietes Magnetiques Des Ferrites – Ferrimagnetisme Et Antiferromagnetisme, Annales de Physique 3 (1948) 137-98.

Google Scholar

[19] J.L. Ortiz-Quinonez, U. Pal, M.S. Villanueva, Structural, Magnetic, and Catalytic valuation of spinel Co, Ni and Co-Ni ferrite nanoparticles Fabricated by low-temperature solution combustion process, ACS Omega 3 (2018) 14986-15001.

DOI: 10.1021/acsomega.8b02229

Google Scholar

[20] T.N. Pham, T.Q. Huy, A.T. Le, Spinel ferrite (AFe2O4) - based heterostructured designs for lithium-ion battery, environmental monitoring and biomedical applications, RSC Adv. 10 (2020) 31622-31661.

DOI: 10.1039/d0ra05133k

Google Scholar

[21] V. Tsurkan, H.A.K. Nidda, J. Deisenhofer, P. Lunkenheimer, A. Loidl, On the complexity of spinels: Magnetic, electronic, and polar ground states, Phy. Rep. 926 (2021) 1-86.

DOI: 10.1016/j.physrep.2021.04.002

Google Scholar

[22] T. Vangijzegem, D. Stanicki, S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics, Exp. Opin. Drug Deliv. 16 (2019) 69-78.

DOI: 10.1080/17425247.2019.1554647

Google Scholar

[23] A.Z. Wilczewska, K. Niemirowicz, K.H. Markiewicz, H. Car, Nanoparticles as drug delivery systems, Pharmacol. Rep. 64 (2012) 1020-37.

DOI: 10.1016/s1734-1140(12)70901-5

Google Scholar

[24] F. Yang, P.G. Lei, J. Jiao, Recent advances in the use of magnetic nanoparticles in bio-imaging applications, Nanosci. Nanotechnol. Lett. 11 (2019) 901-22.

DOI: 10.1166/nnl.2019.2969

Google Scholar

[25] Y.A. Koksharov, S.P. Gubin, I.V. Taranov, G.B. Khomutov, Y.V. Gulyaev, Magnetic nanoparticles in medicine: Progress, problems and advances, J. Commun. Technol. Electron. 67 (2022) 101-16.

DOI: 10.1134/s1064226922020073

Google Scholar

[26] H. Qu, H. Ma, A. Riviere, W. Zhou, C.J. O'Connor, One spot synthesis in polyamine for preparation of water –soluble magnetite nanoparticles with amine surface reactivity, J. Mater. Chem. 22 (2012) 3311-13.

DOI: 10.1039/c2jm15932e

Google Scholar

[27] I. Martinez- Mera, M.E. Espinosa, R. Perez-Hernandez, J. Arenas-Alatorre, Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature, Mater Lett. 61 (2007) 4447-51.

DOI: 10.1016/j.matlet.2007.02.018

Google Scholar

[28] S.A. Morisson, C.L. Cahill, E.E. Carpenter, S. Calvin, V.G. Harris, Atomic Engineering of mixed Ferrite and core-Shell nanoparticles, J. Nanosci. Nanotechnol. 5 (2005) 1323-44.

DOI: 10.1166/jnn.2005.303

Google Scholar

[29] Y.K. Sun, M. Ma, Y. Zhang, N. Gu, Synthesis of nanometer-size maghemite particles from magnetite, Colloids Surf. A 245 (2004) 15-19.

DOI: 10.1016/j.colsurfa.2004.05.009

Google Scholar

[30] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-110.

DOI: 10.1021/cr068445e

Google Scholar

[31] S.J. Lee, J.R. Jeong, S.C. Shin, J.C. Kim, J.D. Kim, Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by co-precipitation technique, J. Magn. Magn. Mater. 282 (2004) 147-50.

DOI: 10.1016/j.jmmm.2004.04.035

Google Scholar

[32] P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles, In: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials, Elsevier, Amsterdam, The Netherlands, 2006, p.403.

DOI: 10.1016/s1567-2719(05)16005-3

Google Scholar

[33] R.M. Cornell, U. Schwertmann, The Iron Oxides, VCH Publisher, Weinheim, Germany, 1996.

Google Scholar

[34] T. Sugimoto, Formation of Monodisperse nano and micro-particles controlled in size, shape, and internal structure, Chem. Eng. Technol. 26 (2003) 313-21.

DOI: 10.1002/ceat.200390048

Google Scholar

[35] H.C. Schwarzer, W. Peukert, Tailoring particle size through nanoparticle precipitation, Chem. Eng. Commun. 191 (2004) 580-606.

DOI: 10.1080/00986440490270106

Google Scholar

[36] R.M. Cornell, U. Schwertmann, Iron oxides in the Laboratory: Preparation and Characterization, VCH Publishers, Weinheim, Germany, 1991.

Google Scholar

[37] M. Tominaga, M. Matsumoto, K. Soejima, I.J. Taniguchi, Size control for two-dimensional iron oxide nanodots derived from biological molecules. J. Colloid. Interface. Sci. 299 (2006) 761-65.

DOI: 10.1016/j.jcis.2006.02.022

Google Scholar

[38] X.L. Liu, H.M. Fan, J.B. Yi, Y. Yang, E.S.G. Choo, J.M. Xue, D.D. Fan, J. Ding, Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents, J. Mater. Chem. 22 (2012) 8235-44.

DOI: 10.1039/c2jm30472d

Google Scholar

[39] L. Gutierrez, L. de la Cueva, M. Moros, E. Mazario, S. de Bernardo, J.M. de la Fuente et al. Aggregation effects on the magnetic properties of iron oxide colloids, Nanotechnol. 30 (2019)112001.

DOI: 10.1088/1361-6528/aafbff

Google Scholar

[40] D. Thapa, V.R. Palkar, M.B. Kurup, S.K. Malik, Properties of magnetite nanoparticles synthesized through a novel chemical route, Mater. Lett. 58 (2004) 2692-94.

DOI: 10.1016/j.matlet.2004.03.045

Google Scholar

[41] H. Pardoe, W. Chua-Anusorn, T. St. Pierre, J. Dobson, Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol, J. Magn. Magn. Mater. 225 (2001) 41-46.

DOI: 10.1016/s0304-8853(00)01226-9

Google Scholar

[42] S.E. Khalafalla, G.W. Reimers, Preparation of Dilution- Stable aqueous magnetic fluids, IEEE Trans. Magn. 16 (1980) 178-83.

DOI: 10.1109/tmag.1980.1060578

Google Scholar

[43] M.C. Mascolo, Y. Pei, T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases, Materials 6 (2013) 5549-67.

DOI: 10.3390/ma6125549

Google Scholar

[44] N.D. Cuong, T.T. Hoa, D.Q. Khieu, T.D. Lam, N.D. Hoa, N.V. Hieu, Synthesis, Characterisation and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4 –chitosan, J. Alloy Comp. 523 (2012) 120-26.

DOI: 10.1016/j.jallcom.2012.01.117

Google Scholar

[45] R. Yuvakkumar, S.I. Hong, Green synthesis of spinel magnetite iron oxide nanoparticles, Adv. Mater. Res. 1051 (2014) 39-42.

DOI: 10.4028/www.scientific.net/amr.1051.39

Google Scholar

[46] A.M. Awwad, N.M. Salem, A Green and facile approach for synthesis of magnetite nanoparticles, Nanosci. Nanotechnol. 2 (2012) 208-13.

Google Scholar

[47] D. Vollath, Nanoparticles- Nanocomposites- Nanomaterials: An Introduction for Beginners, John Wiley and Sons, 2013.

Google Scholar

[48] B. Lesiak, N. Rangam, P. Jiricek, I. Gordeev, J. Toth, L. Kover, M. Mohai, P. Borowicz, Surface study of Fe3O4 nanoparticlesfunctionalized with biocompatible adsorbed molecules, Front. Chem. 7 (2019) 642.

DOI: 10.3389/fchem.2019.00642

Google Scholar

[49] M.S.A Darwish, L.M. Al- Harbi, A. Bakry, Synthesis of magnetite nanoparticles coated with polyvinyl alcohol for hyperthermia application, J. Therm. Anal. Calorim. 2022.

DOI: 10.1007/s10973-022-11393-6

Google Scholar

[50] S.E. Favela-Camacho, E.J. Samaniego-Benitez, A. Godinez-Garcia, L.M. Aviles-Arellano, J.F. Perez-Robles, How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties, Colloids and Surfaces A 574 (2019)29-35.

DOI: 10.1016/j.colsurfa.2019.04.016

Google Scholar

[51] V.A.R. Villegas, J.I.D.L. Ramirez, E.H. Guevara, S.P. Sicairos, L.A.H. Ayala, B.L. Sanchez, Synthesis and characterization of magnetite nanoparticles for photocatalysis of nitrobenzene, J. Saudi. Chem. Soc. 24 (2020) 223-35.

DOI: 10.1016/j.jscs.2019.12.004

Google Scholar

[52] L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales, P. Herrasti, Magnetite nanoparticles: Electrochemical synthesis and characterization, Electrochim. Acta. 53 (2008) 3436-41.

DOI: 10.1016/j.electacta.2007.12.006

Google Scholar

[53] R.H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater. 200 (1999) 359-72.

Google Scholar

[54] S. Bhattacharya, A. Roychowdhury, V. Tiwari, A. Prasad, R.S. Ningthoujam, A.B. Patel, D. Das, S. Nayar, Effect of biomimetic templates on the magneto- structural properties of Fe3O4 nanoparticles, RSC Adv. 5 (2015) 13777.

DOI: 10.1039/c5ra00705d

Google Scholar

[55] S. Kayal, R.V. Ramanujan, Doxorubician loaded PVA coated iron oxide nanoparticles for targated drug delivery, Mater. Sci. Eng. C Biom. Mater. Sens. Syst. 30 (2010) 484-90.

DOI: 10.1016/j.msec.2010.01.006

Google Scholar

[56] R. Kurchania, S.S. Sawant, R.J. Ball, Synthesis and characterization of magnetite/ polyvinyl alcohol; core shell composite nanoparticles, J. Am. Ceram. Soc. 97 (2014) 3208- 15.

DOI: 10.1111/jace.13108

Google Scholar

[57] M.H. Rashid, M. Raula, T.K. Mandal, Synthesis of magnetic nanostructures: shape tuning by the addition of a polymer at low temperature, Mater. Chem. Phys. 145 (2014) 491-98.

DOI: 10.1016/j.matchemphys.2014.03.002

Google Scholar

[58] A.G. Roca, M.P. Morales, K. O'Grady, C.J. Serna, Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors, Nanotechnology 17 (2006) 2783-88.

DOI: 10.1088/0957-4484/17/11/010

Google Scholar

[59] C. Vazquez-Vazquez, M.A. Lopez-Quintela, M.C. Bujan-Nunez, J. Rivas, Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles, J. Nanopart. Res.13 (2011) 1663.

DOI: 10.1007/s11051-010-9920-7

Google Scholar

[60] G. Schinteie, P. Palade, L. Vekas, N. Iacob, C. Bartha, V. Kuncser, Volume fraction dependent magnetic behavior of ferrofluids for rotating seal applications, J. Phys. D: Appl. Phys. 46 (2013) 395501.

DOI: 10.1088/0022-3727/46/39/395501

Google Scholar

[61] C.M. Sorensen, Magnetism, in: K.J. Klabunde (Ed), Nanoscale Materials in Chemistry, New York, Wiley, 2001.

Google Scholar

[62] R.E. Rosenweig, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater. 252 (2002) 370.

Google Scholar