[1]
S.G. Wesley, M.A.N. Davino, M.F. Rafael, B.A.F. Pierre, Superparamagnetic Nanoparticles with Spinel Structure: A Review of Synthesis and Biomedical Applications, Solid State Phenom. 241 (2016) 139-76.
Google Scholar
[2]
S.M. Dadfar, D. Camozzi, M. Darguzyte, K. Roemhild, P. Varvara, J. Metselaar et al. Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance, J. Nanobiotechnol. 18 (2020) 22.
DOI: 10.1186/s12951-020-0580-1
Google Scholar
[3]
D.A. Guzman-Rocha, T. Cordova-Fraga, J.J. Bernal-Alvarado, Z. Lopez, F.A. Cholico, L.H. Quintero et al. A ferrofluid with high specific absorption rate prepared in a single step using a biopolymer, Materials 15 (2022) 788.
DOI: 10.3390/ma15030788
Google Scholar
[4]
S.H. Xuan, F. Wang, J.M.Y. Lai, K.W.Y. Sham, Y.X.J. Wang, S.F. Lee, J.C. Yu, C.H.K. Cheng, K.C.F. Leung, Synthesis of Biocompatible, Mesoporous Fe3O4 Nano/Microspheres with Large Surface Area for Magnetic Resonance Imaging and Therapeutic Applications, ACS Appl. Mater. Interface. 3 (2011) 237-44.
DOI: 10.1021/am1012358
Google Scholar
[5]
E. Katz, Synthesis, properties and Applications of Magnetic Nanoparticles and nanowires-A brief introduction, Magnetochemistry 5 (2019) 61.
DOI: 10.3390/magnetochemistry5040061
Google Scholar
[6]
X. Liu, Y. Zhang, Y. Wang, W. Zhu, G. Li, X. Ma et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy, Theranostics 10 (2020) 3793-815.
DOI: 10.7150/thno.40805
Google Scholar
[7]
K. Wu, D.Q. Su, J.M. Liu, R. Saha, J.P. Wang, Magnetic nanoparticles in nanomedicine: A review of recent advances, Nanotechnol. 30 (2019) 502003.
DOI: 10.1088/1361-6528/ab4241
Google Scholar
[8]
G.M. Ziarani, M. Malmir, N. Lashgari, A. Badiei, The role of hollow magnetic nanoparticles in drug delivery, RSC Adv. 9 (2019) 25094-106.
DOI: 10.1039/c9ra01589b
Google Scholar
[9]
A. Hssaini, M. Belaiche, M. Elansary, C.A. Ferdi, M. Yassine, Magnetic and structural properties of novel–coated Ni0.5Co0.5Fe1.6Gd0.2Mo0.1Sm0.1O4 spinel ferrite nanomaterials: experimental and theoretical investigations, J. Supercond. Nov. Magn. (2022).
DOI: 10.1007/s10948-022-06307-4
Google Scholar
[10]
L. Neel, Theorie du trainage magnetique des ferromagnetiques en grains fins avec applications aux terres cuites, Ann. Geophys. 5 (1949) 99-136.
Google Scholar
[11]
V.G. Harris, Modern Microwave Ferrites, IEEE Trans. Magn. 48 (2012) 1075-104.
Google Scholar
[12]
C. Walcott, J.L. Gould, J.L. Kirschvink, Pigeons have magnets, Science 205 (1979) 1027-29.
DOI: 10.1126/science.472725
Google Scholar
[13]
J.L. Gould, J.L. Kirschvink, K.S. Deffeyes, Bees have magnetic remanence, Science 201 (1978) 1026-28.
DOI: 10.1126/science.201.4360.1026
Google Scholar
[14]
R.B. Frankel, R.P. Blakemore, R.S. Wolfe, Magnetite in freshwater magnetotactic bacteria, Science 203 (1979)1355-56.
DOI: 10.1126/science.203.4387.1355
Google Scholar
[15]
W.H. Bragg, The structure of magnetite and the spinels, Nature 95 (1915) 561.
Google Scholar
[16]
W. Galvao, R. Freire, T. Ribeiro, I. Vasconcelos, L. Costa, V. Freire, F. Sales, J. Denardin, P. Fechine, Cubic Superparamagnetic nanoparticles of NiFe2O4 via fast microwave heating, J. Nano. Res. 16 (2014) 1-10.
DOI: 10.1007/s11051-014-2803-6
Google Scholar
[17]
B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, 2009.
Google Scholar
[18]
L. Neel, Proprietes Magnetiques Des Ferrites – Ferrimagnetisme Et Antiferromagnetisme, Annales de Physique 3 (1948) 137-98.
Google Scholar
[19]
J.L. Ortiz-Quinonez, U. Pal, M.S. Villanueva, Structural, Magnetic, and Catalytic valuation of spinel Co, Ni and Co-Ni ferrite nanoparticles Fabricated by low-temperature solution combustion process, ACS Omega 3 (2018) 14986-15001.
DOI: 10.1021/acsomega.8b02229
Google Scholar
[20]
T.N. Pham, T.Q. Huy, A.T. Le, Spinel ferrite (AFe2O4) - based heterostructured designs for lithium-ion battery, environmental monitoring and biomedical applications, RSC Adv. 10 (2020) 31622-31661.
DOI: 10.1039/d0ra05133k
Google Scholar
[21]
V. Tsurkan, H.A.K. Nidda, J. Deisenhofer, P. Lunkenheimer, A. Loidl, On the complexity of spinels: Magnetic, electronic, and polar ground states, Phy. Rep. 926 (2021) 1-86.
DOI: 10.1016/j.physrep.2021.04.002
Google Scholar
[22]
T. Vangijzegem, D. Stanicki, S. Laurent, Magnetic iron oxide nanoparticles for drug delivery: Applications and characteristics, Exp. Opin. Drug Deliv. 16 (2019) 69-78.
DOI: 10.1080/17425247.2019.1554647
Google Scholar
[23]
A.Z. Wilczewska, K. Niemirowicz, K.H. Markiewicz, H. Car, Nanoparticles as drug delivery systems, Pharmacol. Rep. 64 (2012) 1020-37.
DOI: 10.1016/s1734-1140(12)70901-5
Google Scholar
[24]
F. Yang, P.G. Lei, J. Jiao, Recent advances in the use of magnetic nanoparticles in bio-imaging applications, Nanosci. Nanotechnol. Lett. 11 (2019) 901-22.
DOI: 10.1166/nnl.2019.2969
Google Scholar
[25]
Y.A. Koksharov, S.P. Gubin, I.V. Taranov, G.B. Khomutov, Y.V. Gulyaev, Magnetic nanoparticles in medicine: Progress, problems and advances, J. Commun. Technol. Electron. 67 (2022) 101-16.
DOI: 10.1134/s1064226922020073
Google Scholar
[26]
H. Qu, H. Ma, A. Riviere, W. Zhou, C.J. O'Connor, One spot synthesis in polyamine for preparation of water –soluble magnetite nanoparticles with amine surface reactivity, J. Mater. Chem. 22 (2012) 3311-13.
DOI: 10.1039/c2jm15932e
Google Scholar
[27]
I. Martinez- Mera, M.E. Espinosa, R. Perez-Hernandez, J. Arenas-Alatorre, Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature, Mater Lett. 61 (2007) 4447-51.
DOI: 10.1016/j.matlet.2007.02.018
Google Scholar
[28]
S.A. Morisson, C.L. Cahill, E.E. Carpenter, S. Calvin, V.G. Harris, Atomic Engineering of mixed Ferrite and core-Shell nanoparticles, J. Nanosci. Nanotechnol. 5 (2005) 1323-44.
DOI: 10.1166/jnn.2005.303
Google Scholar
[29]
Y.K. Sun, M. Ma, Y. Zhang, N. Gu, Synthesis of nanometer-size maghemite particles from magnetite, Colloids Surf. A 245 (2004) 15-19.
DOI: 10.1016/j.colsurfa.2004.05.009
Google Scholar
[30]
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications, Chem. Rev. 108 (2008) 2064-110.
DOI: 10.1021/cr068445e
Google Scholar
[31]
S.J. Lee, J.R. Jeong, S.C. Shin, J.C. Kim, J.D. Kim, Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by co-precipitation technique, J. Magn. Magn. Mater. 282 (2004) 147-50.
DOI: 10.1016/j.jmmm.2004.04.035
Google Scholar
[32]
P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, Synthesis, properties and biomedical applications of magnetic nanoparticles, In: K.H.J. Buschow (Ed.), Handbook of Magnetic Materials, Elsevier, Amsterdam, The Netherlands, 2006, p.403.
DOI: 10.1016/s1567-2719(05)16005-3
Google Scholar
[33]
R.M. Cornell, U. Schwertmann, The Iron Oxides, VCH Publisher, Weinheim, Germany, 1996.
Google Scholar
[34]
T. Sugimoto, Formation of Monodisperse nano and micro-particles controlled in size, shape, and internal structure, Chem. Eng. Technol. 26 (2003) 313-21.
DOI: 10.1002/ceat.200390048
Google Scholar
[35]
H.C. Schwarzer, W. Peukert, Tailoring particle size through nanoparticle precipitation, Chem. Eng. Commun. 191 (2004) 580-606.
DOI: 10.1080/00986440490270106
Google Scholar
[36]
R.M. Cornell, U. Schwertmann, Iron oxides in the Laboratory: Preparation and Characterization, VCH Publishers, Weinheim, Germany, 1991.
Google Scholar
[37]
M. Tominaga, M. Matsumoto, K. Soejima, I.J. Taniguchi, Size control for two-dimensional iron oxide nanodots derived from biological molecules. J. Colloid. Interface. Sci. 299 (2006) 761-65.
DOI: 10.1016/j.jcis.2006.02.022
Google Scholar
[38]
X.L. Liu, H.M. Fan, J.B. Yi, Y. Yang, E.S.G. Choo, J.M. Xue, D.D. Fan, J. Ding, Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents, J. Mater. Chem. 22 (2012) 8235-44.
DOI: 10.1039/c2jm30472d
Google Scholar
[39]
L. Gutierrez, L. de la Cueva, M. Moros, E. Mazario, S. de Bernardo, J.M. de la Fuente et al. Aggregation effects on the magnetic properties of iron oxide colloids, Nanotechnol. 30 (2019)112001.
DOI: 10.1088/1361-6528/aafbff
Google Scholar
[40]
D. Thapa, V.R. Palkar, M.B. Kurup, S.K. Malik, Properties of magnetite nanoparticles synthesized through a novel chemical route, Mater. Lett. 58 (2004) 2692-94.
DOI: 10.1016/j.matlet.2004.03.045
Google Scholar
[41]
H. Pardoe, W. Chua-Anusorn, T. St. Pierre, J. Dobson, Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol, J. Magn. Magn. Mater. 225 (2001) 41-46.
DOI: 10.1016/s0304-8853(00)01226-9
Google Scholar
[42]
S.E. Khalafalla, G.W. Reimers, Preparation of Dilution- Stable aqueous magnetic fluids, IEEE Trans. Magn. 16 (1980) 178-83.
DOI: 10.1109/tmag.1980.1060578
Google Scholar
[43]
M.C. Mascolo, Y. Pei, T.A. Ring, Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases, Materials 6 (2013) 5549-67.
DOI: 10.3390/ma6125549
Google Scholar
[44]
N.D. Cuong, T.T. Hoa, D.Q. Khieu, T.D. Lam, N.D. Hoa, N.V. Hieu, Synthesis, Characterisation and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4 –chitosan, J. Alloy Comp. 523 (2012) 120-26.
DOI: 10.1016/j.jallcom.2012.01.117
Google Scholar
[45]
R. Yuvakkumar, S.I. Hong, Green synthesis of spinel magnetite iron oxide nanoparticles, Adv. Mater. Res. 1051 (2014) 39-42.
DOI: 10.4028/www.scientific.net/amr.1051.39
Google Scholar
[46]
A.M. Awwad, N.M. Salem, A Green and facile approach for synthesis of magnetite nanoparticles, Nanosci. Nanotechnol. 2 (2012) 208-13.
Google Scholar
[47]
D. Vollath, Nanoparticles- Nanocomposites- Nanomaterials: An Introduction for Beginners, John Wiley and Sons, 2013.
Google Scholar
[48]
B. Lesiak, N. Rangam, P. Jiricek, I. Gordeev, J. Toth, L. Kover, M. Mohai, P. Borowicz, Surface study of Fe3O4 nanoparticlesfunctionalized with biocompatible adsorbed molecules, Front. Chem. 7 (2019) 642.
DOI: 10.3389/fchem.2019.00642
Google Scholar
[49]
M.S.A Darwish, L.M. Al- Harbi, A. Bakry, Synthesis of magnetite nanoparticles coated with polyvinyl alcohol for hyperthermia application, J. Therm. Anal. Calorim. 2022.
DOI: 10.1007/s10973-022-11393-6
Google Scholar
[50]
S.E. Favela-Camacho, E.J. Samaniego-Benitez, A. Godinez-Garcia, L.M. Aviles-Arellano, J.F. Perez-Robles, How to decrease the agglomeration of magnetite nanoparticles and increase their stability using surface properties, Colloids and Surfaces A 574 (2019)29-35.
DOI: 10.1016/j.colsurfa.2019.04.016
Google Scholar
[51]
V.A.R. Villegas, J.I.D.L. Ramirez, E.H. Guevara, S.P. Sicairos, L.A.H. Ayala, B.L. Sanchez, Synthesis and characterization of magnetite nanoparticles for photocatalysis of nitrobenzene, J. Saudi. Chem. Soc. 24 (2020) 223-35.
DOI: 10.1016/j.jscs.2019.12.004
Google Scholar
[52]
L. Cabrera, S. Gutierrez, N. Menendez, M.P. Morales, P. Herrasti, Magnetite nanoparticles: Electrochemical synthesis and characterization, Electrochim. Acta. 53 (2008) 3436-41.
DOI: 10.1016/j.electacta.2007.12.006
Google Scholar
[53]
R.H. Kodama, Magnetic nanoparticles, J. Magn. Magn. Mater. 200 (1999) 359-72.
Google Scholar
[54]
S. Bhattacharya, A. Roychowdhury, V. Tiwari, A. Prasad, R.S. Ningthoujam, A.B. Patel, D. Das, S. Nayar, Effect of biomimetic templates on the magneto- structural properties of Fe3O4 nanoparticles, RSC Adv. 5 (2015) 13777.
DOI: 10.1039/c5ra00705d
Google Scholar
[55]
S. Kayal, R.V. Ramanujan, Doxorubician loaded PVA coated iron oxide nanoparticles for targated drug delivery, Mater. Sci. Eng. C Biom. Mater. Sens. Syst. 30 (2010) 484-90.
DOI: 10.1016/j.msec.2010.01.006
Google Scholar
[56]
R. Kurchania, S.S. Sawant, R.J. Ball, Synthesis and characterization of magnetite/ polyvinyl alcohol; core shell composite nanoparticles, J. Am. Ceram. Soc. 97 (2014) 3208- 15.
DOI: 10.1111/jace.13108
Google Scholar
[57]
M.H. Rashid, M. Raula, T.K. Mandal, Synthesis of magnetic nanostructures: shape tuning by the addition of a polymer at low temperature, Mater. Chem. Phys. 145 (2014) 491-98.
DOI: 10.1016/j.matchemphys.2014.03.002
Google Scholar
[58]
A.G. Roca, M.P. Morales, K. O'Grady, C.J. Serna, Structural and magnetic properties of uniform magnetite nanoparticles prepared by high temperature decomposition of organic precursors, Nanotechnology 17 (2006) 2783-88.
DOI: 10.1088/0957-4484/17/11/010
Google Scholar
[59]
C. Vazquez-Vazquez, M.A. Lopez-Quintela, M.C. Bujan-Nunez, J. Rivas, Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles, J. Nanopart. Res.13 (2011) 1663.
DOI: 10.1007/s11051-010-9920-7
Google Scholar
[60]
G. Schinteie, P. Palade, L. Vekas, N. Iacob, C. Bartha, V. Kuncser, Volume fraction dependent magnetic behavior of ferrofluids for rotating seal applications, J. Phys. D: Appl. Phys. 46 (2013) 395501.
DOI: 10.1088/0022-3727/46/39/395501
Google Scholar
[61]
C.M. Sorensen, Magnetism, in: K.J. Klabunde (Ed), Nanoscale Materials in Chemistry, New York, Wiley, 2001.
Google Scholar
[62]
R.E. Rosenweig, Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater. 252 (2002) 370.
Google Scholar