Possibilities of Artificial Muscles Using Dielectric Elastomers and their Applications

Article Preview

Abstract:

The recent developments in dielectric elastomers (DE) are spectacular. Currently, a DE as an actuator, 0.15 g of acrylic sandwiching SWCNT electrodes, is capable of lifting a weight of 8 kg by more than 1 mm at a speed of 88 msec. In the near future, DE motors could be used to drive electric vehicles. Moreover, the DE can be used as a high-efficiency sensor with the same structure. With a diameter of 20 mm and a thickness of 0.5 mm, it can accurately measure pressure from several kg to 150 kg. In addition, reversing this DE actuator (DEA) movement also enables high-efficiency power generation. In other words, when the DEA is stretched or pushed, it generates electric power. Single wall nanotubes (SWCNTs) were used as an electrode, and an acrylic DE power generation cartridge with a diameter of 80 mm was used. When the center of the DE power generation cartridge is pushed by about 15 mm, a power of 33.6 mJ is generated. Using these two DE cartridges, it was possible to charge a secondary battery through a DC converter. In addition to this power generator, practical research and development of power generation using wave power, wind power, waste heat, and fluids (ocean currents, water currents, etc.) is progressing. In this paper, we have described state-of-the-art DEAs, DE generators (including the case that the power generated locally by microgenerators are consumed locally), and DE sensors and explained their usefulness.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-117

Citation:

Online since:

April 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Roentgen, About the Change in Shape and Volume of Dielectrics Cased by Electricity, Ann. Phys. Chem., 11(1880) 771-788.

Google Scholar

[2] A. Katchalsky, Rapid swelling and deswelling of reversible gels of polymeric acid by ionization. Experimentia, 5 (1949) 19-320.

DOI: 10.1007/bf02172636

Google Scholar

[3] S. Chiba, M. Waki, Evolving Dielectric Elastomer Artificial Muscle (Detailed Explanation of Artificial Muscle Actuators, Sensors and High-Efficiency Power Generation: From Principles to Latest Application Trends), 1st ed., Book Editor: S. Chiba, And Tech Corporation, Tokyo, Japan, July, 2016, ISBN:978-4-9907931-9-7

DOI: 10.1115/1.0001183v

Google Scholar

[4] K. Oguro, N. Fujiwara, K. Asaka, K. Onishi, S. Sewa, Polymer electrolyte actuator with gold electrodes, Proc. 3669, Smart Structures and Materials: Electroactive Polymer Actuators and Devices, 28 May 1999, Newport Beach, CA, USA; doi.org.

DOI: 10.1117/12.349698

Google Scholar

[5] K. Takagi, Polymer Actuators and Science for Soft Robotics, The Robotics Society of Japan, 37, 1 (2019) 38-41, doi.org/.

DOI: 10.7210/jrsj.37.38

Google Scholar

[6] T. Otero, J. Sansiñena, J., Soft and wet conducting polymers for artificial muscles, 1998, Advanced Materials 10 (1998) 6, 491-494.

DOI: 10.1002/(sici)1521-4095(199804)10:6<491::aid-adma491>3.0.co;2-q

Google Scholar

[7] Osada, Y., Okuzai, H., Hori, H, A polymer gel with electrically driven motility, Nature, 355 (1992) 242-244.

DOI: 10.1038/355242a0

Google Scholar

[8] R. Pelrine, S. Chiba, Review of Artificial Muscle Approaches, In Proc. of Third Intl Symposium on Micromachine and Human Science (Invited), Nagoya, Japan, 1992, pp.1-9.

Google Scholar

[9] R. Pelrine, R. Kornbluh, J. Joseph, R. Hetdit, S. Chiba, High-field defomation of elasomeric dielectrics for actuators, In Proc. 6th SPIE Symposium on Smart Structure and Materials, Newport Beach, CA, USA, 3669(1999) 149-161.

Google Scholar

[10] R. Baughman, C. Cui, A. Zakhhidov, J. Barisci, G. Sprinks, G. Wallace, A. Mazzoldi, D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon Nanotube Actuators, Science 284 (1999) 1340-1344

DOI: 10.1126/science.284.5418.1340

Google Scholar

[11] B. Gross, Experiments on Electrets, Phys, 66 (1944) 26.

Google Scholar

[12] Y. Kurita, F. Sugihara, J. Ueda, T. Ogasawara, MRI Compatible Robot Gripper Large-Strain Piezoelectric Actuator, The Japan Society of Mechanical Engineers, 76-761 (2010), 132-141.

DOI: 10.1299/kikaic.76.132

Google Scholar

[13] P. Chou, B. Hannaford, Static and dynamic characteristics of mckibben pneumatic artificial muscles, Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, (1994) 281-286.

DOI: 10.1109/robot.1994.350977

Google Scholar

[14] G. Smots, New developments in photochromic polymers, 1995, J. Polymers Science, Polymers Chemistry, 13 (1995) 2223.

Google Scholar

[15] H. Tobushi, S. Hayashi, S. Kojima, 1992, Mechanical Properties of Shape Memory Polymer of Polyurethane Series, in JSME International J., Series 1, 35 (1992) 3.

DOI: 10.1299/jsmea1988.35.3_296

Google Scholar

[16] Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles – Reality Potential and Challenges, 1st edition, ed. Y. Bar-Cohen, SPIE Press (2001).

DOI: 10.1117/3.547465.ch21

Google Scholar

[17] B. Ratna, D. Thomsen, P. Keller, Liquid crystalline elastomers as artificial muscles: role of side chain-backbone coupling, Proc., Smart Structure and Materials, Newport Beach, CA, USA; 4329 (2001).

DOI: 10.1117/12.432651

Google Scholar

[18] H. Tomori, T. Nakamura, Theoretical Comparison of Mckibben-Type Artificial Muscle and novel Straight-Fiber-Type Artificial Muscle, Int. J. Automation Technology, 5, 4 (2011) 544.

DOI: 10.20965/ijat.2011.p0544

Google Scholar

[19] Carpi, F.; Anderson, I.; Bauer, B.; Frediani Gallone, G.; Gei, M.; Graaf, C. Standards for dielectric transducers. Smart Mater. Struct. 2015, 24, 105025.

DOI: 10.1088/0964-1726/24/10/105025

Google Scholar

[20] S. Chiba. M. Kobayashi, T. Qu, S. Zhu, M. Waki, M. Takeshita, K. Ohyama, Examination of factors to improve the elongation and output of dielectric elastomers, In Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD)XXIV, 1204211, Virtual, Online, 20 April 2022; doi.org/.

DOI: 10.1117/12.2603716

Google Scholar

[21] P. Hu, J. Madsen, A. Skov, Super-stretchable silicone elastomer applied in low voltage actuators, Proc. SPIE 11587, Electroactive Polymer Actuators and Devices (EAPAD) XXIII, 1158715, Virtual, Online, (22 March 2021).

DOI: 10.1117/12.2581476

Google Scholar

[22] P. Hu, Q. Huang, J. Madsen, A. Skov, Soft silicone elastomers with no chemical cross-linking and unprecedented softness and stability, Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, 1137517, Virtual, Online, (24 April 2020);

DOI: 10.1117/12.2557003

Google Scholar

[23] S. Jayatissa, V. Shim, I. Anderson, R. Rosset, Optimization of prestretch and actuation stretch of a DEA-based cell stretcher, 2022, Proc. of SPIE 11375-50, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 22-26, 11375-50 (2020).

DOI: 10.1117/12.2558981

Google Scholar

[24] K. Kumamoto, T. Hayashi, Y. Yonehara, M. Okui, T. Nakamura, Development of Development of a locomotion robot using deformable dielectric elastomer actuator without pre-stretch, Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 1137509 (2020).

DOI: 10.1117/12.2558422

Google Scholar

[25] S. Sikulskyi, R. Zefu, S. Govindarajan, D. Mekonnen, F. Madiyar, D. Kim, D., Additively manufactured unimorph dielectric elastomer actuators with ferroelectric particles for enhanced low-voltage actuation, Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long Beach, California, USA, 120420W (2022).

DOI: 10.1117/12.2613128

Google Scholar

[26] L. Romasanta, M. López-Manchado, R. Verdejo, Increasing the performance of dielectric elastomer actuators: A review from the materials perspective, Progress in Polymer Science, 51 (2015): 188-211.

DOI: 10.1016/j.progpolymsci.2015.08.002

Google Scholar

[27] E. Hajiesmaili, D. Clarke, Dielectric elastomer actuators, Journal of Applied Physics, 129.15 (2021) 151102.

DOI: 10.1063/5.0043959

Google Scholar

[28] S. Chiba, M. Waki, S. Zhu, T. Qu, K. Ohyama, Improvement of Elastomer Elongation and Output for Dielectric Elastomers, InTech, (2021).

DOI: 10.5772/intechopen.99713

Google Scholar

[29] F. Albuquerque, Influencing the mean-time-to-failure of single-layer uniaxially pre-stretched silicone-based DEAs, Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, 1204206 (2022).

DOI: 10.1117/12.2611165

Google Scholar

[30] M. Carmel, Enhancing the permittivity of dielectric elastomers with liquid metal, Proc. of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 11375-15 (2020).

DOI: 10.1117/12.2558951

Google Scholar

[31] H. Liebscher, M. Tahir, S. Wiebner, G. Gerlach, Effect of barium titanate particle filler on the performance of polyurethane-based dielectric elastomer actuators, 2022, Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long beach, California, USA, 1204210 (2022).

DOI: 10.1117/12.2612354

Google Scholar

[32] R. Kornbluh, D. Flamm, H. Prahlad, K. Nashold, S. Chhokar, R. Pelrine, D. Huestis, D. Simons, D. Cooper, D. Watters, Shape Control of Large Lightweight Mirrors with Dielectric Elastomer Actuation, In book: Smart Materials, (2021) 61-82.

DOI: 10.1007/978-3-030-70514-5_3

Google Scholar

[33] S. Chiba, M. Waki, M., Recent Advances in Wireless Communications and Networks, Wireless Communication Systems, Chapter 20, pp.435-454, InTech, (2011).

DOI: 10.5772/19015

Google Scholar

[34] J. Kunze, Prechtl, D. Bruch, S. Nalbach, P. Motzki, Z. Mechatronik, S. Seelecke, Design and fabrication of silicone-based dielectric elastomer rolled actuators for soft robotic, applications, Proc. of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 11375-80 (2020).

DOI: 10.1117/12.2558444

Google Scholar

[35] S. Chiba, M. Waki, K. Fujita, K. Ono, Y. Takikawa, R. Hatano, S. Tanak, The challenge of controlling a small Mars exploration plane, In Proc. of SPIE, (Smart Structures and Materials Symposium and its 22nd Electroactive Polymer Actuators and Devices (EAPAD) Conference), Virtual, Online, 1137506 (2020).

DOI: 10.1117/12.2551042

Google Scholar

[36] S. Chiba, Dielectric Elastomers, Soft actuators, 2nd Edition, Springer Nature, Chapter 14, (2019).

DOI: 10.1007/978-981-13-6850-9

Google Scholar

[37] Mad Catz Stereo Headset F.R.E.Q.4D Black with Bayer Vivi Touch technology, www.youtube.com/madcatzcompany.

Google Scholar

[38] S. Chiba, M. Waki, Innovative power generator using dielectric elastomers (creating the foundations of an environmentally sustainable society), Sustainable Chemistry and Pharmacy, 15 (2020), 100205, Elsevier; doi:10.1016/j. scp2019.100205.

DOI: 10.1016/j.scp.2019.100205

Google Scholar

[39] S. Chiba, M. Waki, R. Kormbluh, R. Pelrine, Innovative Power Generators for Energy Harvesting Using Electroactive Polymer Artificial Muscles, Electroactive Polymer Actuators and Devices (EAPAD), ed. Y. Bar-Cohen, Proc. SPIE, San Diego, California, 6927, 692715 (1-9), 2008, doi:10.1117,12.778345.

DOI: 10.1117/12.778345

Google Scholar

[40] S. Chiba, M. Waki, T. Wada, Y. Hirakawa, K. Masuda, T. Ikoma, Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators, Applied Energy, Elsevier, 104 (2013), 497-502, ISSN 0306-2619.

DOI: 10.1016/j.apenergy.2012.10.052

Google Scholar

[41] S. Chiba, M. Waki, Method for Manufacturing Dielectric Elastomer Transducer, Japanese Patent Application No.2021-208150

Google Scholar

[42] S. Chiba, M. Waki, M. Takeshita, M. Uesjima, K. Arakawa, Dielectric elastomer using CNT as an electrode, Proc. of SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 113751C (2020).

DOI: 10.1117/12.2548512

Google Scholar

[43] C. Saint-Aubin, S. Rosset, S. Schlatter, H. Shea, High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes, Smart Mareirals and Structure, 27, 1(2018).

DOI: 10.1088/1361-665X/aa9f45

Google Scholar

[44] M. Dickey, Liquid metals for functional polymers and soft devices, Proc. of SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 113750P, (2020);.

DOI: 10.1117/12.2558674

Google Scholar

[45] S. Chiba, M. Maki, Dielectric elastomer sensor capable of measuring large deformation and pressure, InTech, (2022);.

Google Scholar

[46] S. Chiba, M. Waki, C. Jiang, M. Takeshita, M., Uejima, K. Arakawa, K. Ohyama, The Possibility of a High-Efficiency Wave Power Generation System using Dielectric Elastomers, Energies, 14 (2021), 3414;.

DOI: 10.3390/en14123414

Google Scholar

[47] F. Albuquerque, H. Shea, Effect of humidity, temperature, and elastomer material on the lifetime of silicone-based dielectric elastomer actuators under a constant DC electric field (Conference Presentation), Proc. of SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 113751E, (2020);.

DOI: 10.1117/12.2558428

Google Scholar

[48] R. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-F, B. McCoy, K. Kim, J. Eckerle, T. Low, Promises and Challenge of dielectric elastomer energy harvesting, Electroactivity in polymeric Materials, (2012) 67-93.

DOI: 10.1007/978-1-4614-0878-9_3

Google Scholar

[49] S. Chiba, M. Waki, K. Ono, K. R. Hatano, Y. Taniyama, S. Tanaka, E. Okada, K. Ohyama, Challenge of creating high performance dielectric elastomers. In Proceedings of the SPIE2021 (Smart Structures and Materials Symposium and its 23rd Electroactive Polymer Actuators and Devices (EAPAD) XXIII, Virtual, Online, 115871T (2021), 1157–1162;.

DOI: 10.1117/12.2581255

Google Scholar

[50] S. Chiba, Dielectric elastomer (DE) actuators, In book, Soft actuator materials, compositions, and applied technologies, S&T Publishing, (2016) 93-101, ISBN978-4-907002-61-9.

Google Scholar

[51] M. Hoffmann, G. Moretti, K. Flaßkamp, Multi-objective optimal control for energy extraction and lifetime maximisation in dielectric elastomer wave energy converters, Science, IFAC-PapersOnline, 55-20 (2022) 546-551.

DOI: 10.1016/j.ifacol.2022.09.152

Google Scholar

[52] S. Chiba, M. Waki, Rotation Drive Mechanism, Japan Patent Application No.2022-083319, and PCT /JP2021 /012333.

Google Scholar

[53] C. Briggs, G. Kaiser, Y. Sporidis, P. Vicars, L. Rasmussen, M. Browers, A. Dogrucu, M. Ppovic, A. Zong, Sensitive and robust electroactive polymer tactile pressure sensors and shape-morphing actuation for robotic grippers, Proc. of SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Online, 120420I (2022); doi:10.1117 /12.2607779.

DOI: 10.1117/12.2607779

Google Scholar

[54] H. Böse, J. Liu, Smart elastomer based liquid level sensors with capacitive and resistive measurement principles, Proc. of SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 113750S (2020), doi:10.1117 /12.2557854.

DOI: 10.1117/12.2557854

Google Scholar

[55] R. Venkatraman, R. Kaaya, H. Tchipoque, K. Cuff, R. Asmatulu, R. Amick, Z. Chen, Design, fabrication, and characterization of dielectric elastomer actuator enabled cuff compression device, Proc. of SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long Beach, California, USA, 1204205 (2022), doi:10.1117 /12.2613250.

DOI: 10.1117/12.2613250

Google Scholar

[56] L. Agostini, E. Monari, M. Caselli, R. Vertechy, Multidirectional hemispherical dielectric elastomer proximity sensor for collision avoidance in Human-Robot Interaction applications, Proc. of SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long Beach, California, USA, 1204202 (2022), doi:10.1117.2612864.

DOI: 10.1117/12.2612864

Google Scholar

[57] C. Larson, J. Spjut, R. Knep, R. Shepherd, A Deformable Interface for Human Touch Recognition Using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks, Soft Robotics, 6 – 5 (2019), doi.org/ 10.1089 /soro. 2018.0086.

DOI: 10.1089/soro.2018.0086

Google Scholar

[58] C. Briggs, G. Kaiser, Y. Sporidis, R. Vicars, L. Rasmussen, M. Bowers, A. Dogrucu, M. Popovic, A. Zhong, Sensitive and robust electroactive polymer tactile pressure sensors and shape-morphing actuation for robotic grippers, In Proceedings, SPIE Smart Structure and Material + Nondestructive Evaluation, Long Beach, California, UAS, 1204201 (2022), doi. Org/.

DOI: 10.1117/12.2607779

Google Scholar

[59] S. Chiba, M. Waki, Possibility of a Portable Power Generator Using Dielectric Elastomers and a Charging System for Secondary Batteries, Energies 2022, 15, 5854;.

DOI: 10.3390/en15165854

Google Scholar

[60] S. Chiba, M. Waki, K. Ohyama, High-performance moisture sensors applying dielectric elastomer, Proc. SPIE 11587 Electroactive Polymer Actuators and devices (EAPAD) XXIII, Virtual, Online, 115871W, (2021);.

DOI: 10.1117/12.2581335

Google Scholar

[61] S. Koh, X. Zhao, Z. Suo, Maximal Energy That Can Be Converted by a Dielectric Elastomer Generator, Applied Physics Letters, 94, 262902 (2009).

DOI: 10.1063/1.3167773

Google Scholar

[62] P. Brouchu, H. Li, X. Niu, X., Q. Pei, Factors Influencing the Performance of Dielectric Elastomer Energy Harvesters. In Proc. SPIE, 7642, (EAPAD), Electroactive Actuators and Devices, San Diego, California, USA, 76422J (2010).

DOI: 10.1117/12.847736

Google Scholar

[63] P. Brochu, W. Yuan, H. Zhang, Q. Pei, Dielectric Elastomers for Direct Wind-to-Electricity Power Generation, In Proc. of ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent System, SMASIS2009-1335, Online, (2010) 197-204.

DOI: 10.1115/SMASIS2009-1335

Google Scholar

[64] J. Zhou, L. Jiang, L., R. Khayat, Dynamic Analysis of a Tunable Viscoelastic Dielectric Elastomer Oscillator under External Excitation, Smart Materials and Structures, 25 - 2 (2016) 025005.

DOI: 10.1088/0964-1726/25/2/025005

Google Scholar

[65] S. Chiba, M. Waki, Dielectric Elastomer Transducer (High Efficiency Actuator and Power Generation System), To be published in Book, EcoDesign for Sustainable Products, Services and Social Systems, Springer-Nature, March 2023.

Google Scholar

[66] S. Chiba, R. Kornbluh, R. Pelrine, M. Waki, Low-cost Hydrogen Production From Electroactive Polymer Artificial Muscle Wave Power Generators, Proc. of World Hydrogen Energy Conference 2008, Brisbane, Queensland, Australia, 2008, ISBN:9781615674541.

DOI: 10.1117/12.778345

Google Scholar

[67] S. Chiba, K. Hasegawa, M. Waki, S. Kurita, An Experimental Study on the Motion of Floating Bodies Arranged in Series for Power Generation, Journal of Material Science and Engineering A7 (11-12), 2017, 281-289, doi:10.17265-6213/2017.11-12.001.

DOI: 10.17265/2161-6213/2017.11-12.001

Google Scholar

[68] C. Jiang, S. Chiba, M. Waki, K. Fujita, O. el Moctar, An Investigation of Novel Wave Energy Generator Using Dielectric Elastomers, Proc. ASME 39th International Conference on Ocean, Offshore and Arctic Engineers. Virtual, Online, OMAE-18106, 2020.

DOI: 10.1115/OMAE2020-18106

Google Scholar

[69] M. Iino, T. Miyazaki, M. Iida, Estimation of Cumulative Output Energy of Oscillating Water Colum Wave Energy Converter Considering Power Take Off Damping, Proc. ASME 39th International Conference on Ocean, Offshore and Arctic Engineers, Virtual, Online, OMAE-19172, 2020.

DOI: 10.1115/omae2020-19172

Google Scholar

[70] F. Arena, L. Daniele, V. Fiamma, M. Fontana, G. Malara, G. Moretti, A. Romolo, G. Papini, A. Scialò, R. Vertechy, Field experiments on dielectric elastomer generators integrated on U-OWC wave energy converter, Proc. OMAE, 2018;.

DOI: 10.1115/omae2018-77830

Google Scholar

[71] G. Moretti, G. Pietro, R. Papini, I. Daniele, D. Forehand, D. Ingram, R. Vertechy, M. Fontana Modeling and testing of a wave energy converter based on dielectric elastomer generators, Proc., The Royal Society A, The Royal society publishing, Doi.org/.

DOI: 10.1098/rspa.2018.0566

Google Scholar

[72] S. Chiba, K. Hasegawa, M. Waki, K. Fujita, K., Ohyama, K, S. Zhu 2017, Innovative Elastomer Transducer Driven by Karman Vortices in Water Flow, Journal of Material Science and Engineering A7 (5-6), 2017: 121-135.

DOI: 10.17265/2161-6213/2017.5-6.002

Google Scholar

[73] Mechanism of geothermal power generation (binary power generation), SB energy, https://www.sbenergy.jp/study/illust/geotherma.

Google Scholar

[74] D. Yurchenko, Z. Lai, G. Thomson, D.V. Val, R.V. Bobryk, Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer, Applied Energy, 208 (2017) 456–470.

DOI: 10.1016/j.apenergy.2017.10.006

Google Scholar

[75] G. Thomson, Z. Lai, D. Val, D. Yurchenko, Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound and Vibration, 442 (2019), 167–182.

DOI: 10.1016/j.jsv.2018.10.066

Google Scholar

[76] T. McKay, B. O'Brien, E. Calius, I. Anderson, I., Soft Generators Using Dielectric Elastomers, Applied Physics Letters 98 (14): 142903, 1-3, 2011.

DOI: 10.1063/1.3572338

Google Scholar

[77] I. Anderson, T. Gisby, T. McKay, B. O'Brien1, E. Calius, Multi-functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines, J. Appl. Phys. 112 (4), 041101, 2012.

DOI: 10.1063/1.4740023

Google Scholar

[78] V. Kessel, R. Wattez, P. Bauer, Analyses and Comparison of an Energy Harvesting System for Dielectric Elastomer Generators Using a Passive Harvesting Concept: The Voltage-clamped Multi-phase System, In SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD), San Dan Diego, California, USA 943006 (2015).

DOI: 10.1117/12.2084316

Google Scholar