[1]
W. Roentgen, About the Change in Shape and Volume of Dielectrics Cased by Electricity, Ann. Phys. Chem., 11(1880) 771-788.
Google Scholar
[2]
A. Katchalsky, Rapid swelling and deswelling of reversible gels of polymeric acid by ionization. Experimentia, 5 (1949) 19-320.
DOI: 10.1007/bf02172636
Google Scholar
[3]
S. Chiba, M. Waki, Evolving Dielectric Elastomer Artificial Muscle (Detailed Explanation of Artificial Muscle Actuators, Sensors and High-Efficiency Power Generation: From Principles to Latest Application Trends), 1st ed., Book Editor: S. Chiba, And Tech Corporation, Tokyo, Japan, July, 2016, ISBN:978-4-9907931-9-7
DOI: 10.1115/1.0001183v
Google Scholar
[4]
K. Oguro, N. Fujiwara, K. Asaka, K. Onishi, S. Sewa, Polymer electrolyte actuator with gold electrodes, Proc. 3669, Smart Structures and Materials: Electroactive Polymer Actuators and Devices, 28 May 1999, Newport Beach, CA, USA; doi.org.
DOI: 10.1117/12.349698
Google Scholar
[5]
K. Takagi, Polymer Actuators and Science for Soft Robotics, The Robotics Society of Japan, 37, 1 (2019) 38-41, doi.org/.
DOI: 10.7210/jrsj.37.38
Google Scholar
[6]
T. Otero, J. Sansiñena, J., Soft and wet conducting polymers for artificial muscles, 1998, Advanced Materials 10 (1998) 6, 491-494.
DOI: 10.1002/(sici)1521-4095(199804)10:6<491::aid-adma491>3.0.co;2-q
Google Scholar
[7]
Osada, Y., Okuzai, H., Hori, H, A polymer gel with electrically driven motility, Nature, 355 (1992) 242-244.
DOI: 10.1038/355242a0
Google Scholar
[8]
R. Pelrine, S. Chiba, Review of Artificial Muscle Approaches, In Proc. of Third Intl Symposium on Micromachine and Human Science (Invited), Nagoya, Japan, 1992, pp.1-9.
Google Scholar
[9]
R. Pelrine, R. Kornbluh, J. Joseph, R. Hetdit, S. Chiba, High-field defomation of elasomeric dielectrics for actuators, In Proc. 6th SPIE Symposium on Smart Structure and Materials, Newport Beach, CA, USA, 3669(1999) 149-161.
Google Scholar
[10]
R. Baughman, C. Cui, A. Zakhhidov, J. Barisci, G. Sprinks, G. Wallace, A. Mazzoldi, D. Rossi, A. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Carbon Nanotube Actuators, Science 284 (1999) 1340-1344
DOI: 10.1126/science.284.5418.1340
Google Scholar
[11]
B. Gross, Experiments on Electrets, Phys, 66 (1944) 26.
Google Scholar
[12]
Y. Kurita, F. Sugihara, J. Ueda, T. Ogasawara, MRI Compatible Robot Gripper Large-Strain Piezoelectric Actuator, The Japan Society of Mechanical Engineers, 76-761 (2010), 132-141.
DOI: 10.1299/kikaic.76.132
Google Scholar
[13]
P. Chou, B. Hannaford, Static and dynamic characteristics of mckibben pneumatic artificial muscles, Proceedings of the IEEE International Conference on Robotics and Automation, San Diego, CA, (1994) 281-286.
DOI: 10.1109/robot.1994.350977
Google Scholar
[14]
G. Smots, New developments in photochromic polymers, 1995, J. Polymers Science, Polymers Chemistry, 13 (1995) 2223.
Google Scholar
[15]
H. Tobushi, S. Hayashi, S. Kojima, 1992, Mechanical Properties of Shape Memory Polymer of Polyurethane Series, in JSME International J., Series 1, 35 (1992) 3.
DOI: 10.1299/jsmea1988.35.3_296
Google Scholar
[16]
Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles – Reality Potential and Challenges, 1st edition, ed. Y. Bar-Cohen, SPIE Press (2001).
DOI: 10.1117/3.547465.ch21
Google Scholar
[17]
B. Ratna, D. Thomsen, P. Keller, Liquid crystalline elastomers as artificial muscles: role of side chain-backbone coupling, Proc., Smart Structure and Materials, Newport Beach, CA, USA; 4329 (2001).
DOI: 10.1117/12.432651
Google Scholar
[18]
H. Tomori, T. Nakamura, Theoretical Comparison of Mckibben-Type Artificial Muscle and novel Straight-Fiber-Type Artificial Muscle, Int. J. Automation Technology, 5, 4 (2011) 544.
DOI: 10.20965/ijat.2011.p0544
Google Scholar
[19]
Carpi, F.; Anderson, I.; Bauer, B.; Frediani Gallone, G.; Gei, M.; Graaf, C. Standards for dielectric transducers. Smart Mater. Struct. 2015, 24, 105025.
DOI: 10.1088/0964-1726/24/10/105025
Google Scholar
[20]
S. Chiba. M. Kobayashi, T. Qu, S. Zhu, M. Waki, M. Takeshita, K. Ohyama, Examination of factors to improve the elongation and output of dielectric elastomers, In Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD)XXIV, 1204211, Virtual, Online, 20 April 2022; doi.org/.
DOI: 10.1117/12.2603716
Google Scholar
[21]
P. Hu, J. Madsen, A. Skov, Super-stretchable silicone elastomer applied in low voltage actuators, Proc. SPIE 11587, Electroactive Polymer Actuators and Devices (EAPAD) XXIII, 1158715, Virtual, Online, (22 March 2021).
DOI: 10.1117/12.2581476
Google Scholar
[22]
P. Hu, Q. Huang, J. Madsen, A. Skov, Soft silicone elastomers with no chemical cross-linking and unprecedented softness and stability, Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, 1137517, Virtual, Online, (24 April 2020);
DOI: 10.1117/12.2557003
Google Scholar
[23]
S. Jayatissa, V. Shim, I. Anderson, R. Rosset, Optimization of prestretch and actuation stretch of a DEA-based cell stretcher, 2022, Proc. of SPIE 11375-50, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 22-26, 11375-50 (2020).
DOI: 10.1117/12.2558981
Google Scholar
[24]
K. Kumamoto, T. Hayashi, Y. Yonehara, M. Okui, T. Nakamura, Development of Development of a locomotion robot using deformable dielectric elastomer actuator without pre-stretch, Proc. SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 1137509 (2020).
DOI: 10.1117/12.2558422
Google Scholar
[25]
S. Sikulskyi, R. Zefu, S. Govindarajan, D. Mekonnen, F. Madiyar, D. Kim, D., Additively manufactured unimorph dielectric elastomer actuators with ferroelectric particles for enhanced low-voltage actuation, Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long Beach, California, USA, 120420W (2022).
DOI: 10.1117/12.2613128
Google Scholar
[26]
L. Romasanta, M. López-Manchado, R. Verdejo, Increasing the performance of dielectric elastomer actuators: A review from the materials perspective, Progress in Polymer Science, 51 (2015): 188-211.
DOI: 10.1016/j.progpolymsci.2015.08.002
Google Scholar
[27]
E. Hajiesmaili, D. Clarke, Dielectric elastomer actuators, Journal of Applied Physics, 129.15 (2021) 151102.
DOI: 10.1063/5.0043959
Google Scholar
[28]
S. Chiba, M. Waki, S. Zhu, T. Qu, K. Ohyama, Improvement of Elastomer Elongation and Output for Dielectric Elastomers, InTech, (2021).
DOI: 10.5772/intechopen.99713
Google Scholar
[29]
F. Albuquerque, Influencing the mean-time-to-failure of single-layer uniaxially pre-stretched silicone-based DEAs, Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, 1204206 (2022).
DOI: 10.1117/12.2611165
Google Scholar
[30]
M. Carmel, Enhancing the permittivity of dielectric elastomers with liquid metal, Proc. of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 11375-15 (2020).
DOI: 10.1117/12.2558951
Google Scholar
[31]
H. Liebscher, M. Tahir, S. Wiebner, G. Gerlach, Effect of barium titanate particle filler on the performance of polyurethane-based dielectric elastomer actuators, 2022, Proc. SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long beach, California, USA, 1204210 (2022).
DOI: 10.1117/12.2612354
Google Scholar
[32]
R. Kornbluh, D. Flamm, H. Prahlad, K. Nashold, S. Chhokar, R. Pelrine, D. Huestis, D. Simons, D. Cooper, D. Watters, Shape Control of Large Lightweight Mirrors with Dielectric Elastomer Actuation, In book: Smart Materials, (2021) 61-82.
DOI: 10.1007/978-3-030-70514-5_3
Google Scholar
[33]
S. Chiba, M. Waki, M., Recent Advances in Wireless Communications and Networks, Wireless Communication Systems, Chapter 20, pp.435-454, InTech, (2011).
DOI: 10.5772/19015
Google Scholar
[34]
J. Kunze, Prechtl, D. Bruch, S. Nalbach, P. Motzki, Z. Mechatronik, S. Seelecke, Design and fabrication of silicone-based dielectric elastomer rolled actuators for soft robotic, applications, Proc. of SPIE, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 11375-80 (2020).
DOI: 10.1117/12.2558444
Google Scholar
[35]
S. Chiba, M. Waki, K. Fujita, K. Ono, Y. Takikawa, R. Hatano, S. Tanak, The challenge of controlling a small Mars exploration plane, In Proc. of SPIE, (Smart Structures and Materials Symposium and its 22nd Electroactive Polymer Actuators and Devices (EAPAD) Conference), Virtual, Online, 1137506 (2020).
DOI: 10.1117/12.2551042
Google Scholar
[36]
S. Chiba, Dielectric Elastomers, Soft actuators, 2nd Edition, Springer Nature, Chapter 14, (2019).
DOI: 10.1007/978-981-13-6850-9
Google Scholar
[37]
Mad Catz Stereo Headset F.R.E.Q.4D Black with Bayer Vivi Touch technology, www.youtube.com/madcatzcompany.
Google Scholar
[38]
S. Chiba, M. Waki, Innovative power generator using dielectric elastomers (creating the foundations of an environmentally sustainable society), Sustainable Chemistry and Pharmacy, 15 (2020), 100205, Elsevier; doi:10.1016/j. scp2019.100205.
DOI: 10.1016/j.scp.2019.100205
Google Scholar
[39]
S. Chiba, M. Waki, R. Kormbluh, R. Pelrine, Innovative Power Generators for Energy Harvesting Using Electroactive Polymer Artificial Muscles, Electroactive Polymer Actuators and Devices (EAPAD), ed. Y. Bar-Cohen, Proc. SPIE, San Diego, California, 6927, 692715 (1-9), 2008, doi:10.1117,12.778345.
DOI: 10.1117/12.778345
Google Scholar
[40]
S. Chiba, M. Waki, T. Wada, Y. Hirakawa, K. Masuda, T. Ikoma, Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators, Applied Energy, Elsevier, 104 (2013), 497-502, ISSN 0306-2619.
DOI: 10.1016/j.apenergy.2012.10.052
Google Scholar
[41]
S. Chiba, M. Waki, Method for Manufacturing Dielectric Elastomer Transducer, Japanese Patent Application No.2021-208150
Google Scholar
[42]
S. Chiba, M. Waki, M. Takeshita, M. Uesjima, K. Arakawa, Dielectric elastomer using CNT as an electrode, Proc. of SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 113751C (2020).
DOI: 10.1117/12.2548512
Google Scholar
[43]
C. Saint-Aubin, S. Rosset, S. Schlatter, H. Shea, High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes, Smart Mareirals and Structure, 27, 1(2018).
DOI: 10.1088/1361-665X/aa9f45
Google Scholar
[44]
M. Dickey, Liquid metals for functional polymers and soft devices, Proc. of SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 113750P, (2020);.
DOI: 10.1117/12.2558674
Google Scholar
[45]
S. Chiba, M. Maki, Dielectric elastomer sensor capable of measuring large deformation and pressure, InTech, (2022);.
Google Scholar
[46]
S. Chiba, M. Waki, C. Jiang, M. Takeshita, M., Uejima, K. Arakawa, K. Ohyama, The Possibility of a High-Efficiency Wave Power Generation System using Dielectric Elastomers, Energies, 14 (2021), 3414;.
DOI: 10.3390/en14123414
Google Scholar
[47]
F. Albuquerque, H. Shea, Effect of humidity, temperature, and elastomer material on the lifetime of silicone-based dielectric elastomer actuators under a constant DC electric field (Conference Presentation), Proc. of SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 113751E, (2020);.
DOI: 10.1117/12.2558428
Google Scholar
[48]
R. Kornbluh, R. Pelrine, H. Prahlad, A. Wong-F, B. McCoy, K. Kim, J. Eckerle, T. Low, Promises and Challenge of dielectric elastomer energy harvesting, Electroactivity in polymeric Materials, (2012) 67-93.
DOI: 10.1007/978-1-4614-0878-9_3
Google Scholar
[49]
S. Chiba, M. Waki, K. Ono, K. R. Hatano, Y. Taniyama, S. Tanaka, E. Okada, K. Ohyama, Challenge of creating high performance dielectric elastomers. In Proceedings of the SPIE2021 (Smart Structures and Materials Symposium and its 23rd Electroactive Polymer Actuators and Devices (EAPAD) XXIII, Virtual, Online, 115871T (2021), 1157–1162;.
DOI: 10.1117/12.2581255
Google Scholar
[50]
S. Chiba, Dielectric elastomer (DE) actuators, In book, Soft actuator materials, compositions, and applied technologies, S&T Publishing, (2016) 93-101, ISBN978-4-907002-61-9.
Google Scholar
[51]
M. Hoffmann, G. Moretti, K. Flaßkamp, Multi-objective optimal control for energy extraction and lifetime maximisation in dielectric elastomer wave energy converters, Science, IFAC-PapersOnline, 55-20 (2022) 546-551.
DOI: 10.1016/j.ifacol.2022.09.152
Google Scholar
[52]
S. Chiba, M. Waki, Rotation Drive Mechanism, Japan Patent Application No.2022-083319, and PCT /JP2021 /012333.
Google Scholar
[53]
C. Briggs, G. Kaiser, Y. Sporidis, P. Vicars, L. Rasmussen, M. Browers, A. Dogrucu, M. Ppovic, A. Zong, Sensitive and robust electroactive polymer tactile pressure sensors and shape-morphing actuation for robotic grippers, Proc. of SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Online, 120420I (2022); doi:10.1117 /12.2607779.
DOI: 10.1117/12.2607779
Google Scholar
[54]
H. Böse, J. Liu, Smart elastomer based liquid level sensors with capacitive and resistive measurement principles, Proc. of SPIE 11375, Electroactive Polymer Actuators and Devices (EAPAD) XXII, Virtual, Online, 113750S (2020), doi:10.1117 /12.2557854.
DOI: 10.1117/12.2557854
Google Scholar
[55]
R. Venkatraman, R. Kaaya, H. Tchipoque, K. Cuff, R. Asmatulu, R. Amick, Z. Chen, Design, fabrication, and characterization of dielectric elastomer actuator enabled cuff compression device, Proc. of SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long Beach, California, USA, 1204205 (2022), doi:10.1117 /12.2613250.
DOI: 10.1117/12.2613250
Google Scholar
[56]
L. Agostini, E. Monari, M. Caselli, R. Vertechy, Multidirectional hemispherical dielectric elastomer proximity sensor for collision avoidance in Human-Robot Interaction applications, Proc. of SPIE 12042, Electroactive Polymer Actuators and Devices (EAPAD) XXIV, Long Beach, California, USA, 1204202 (2022), doi:10.1117.2612864.
DOI: 10.1117/12.2612864
Google Scholar
[57]
C. Larson, J. Spjut, R. Knep, R. Shepherd, A Deformable Interface for Human Touch Recognition Using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks, Soft Robotics, 6 – 5 (2019), doi.org/ 10.1089 /soro. 2018.0086.
DOI: 10.1089/soro.2018.0086
Google Scholar
[58]
C. Briggs, G. Kaiser, Y. Sporidis, R. Vicars, L. Rasmussen, M. Bowers, A. Dogrucu, M. Popovic, A. Zhong, Sensitive and robust electroactive polymer tactile pressure sensors and shape-morphing actuation for robotic grippers, In Proceedings, SPIE Smart Structure and Material + Nondestructive Evaluation, Long Beach, California, UAS, 1204201 (2022), doi. Org/.
DOI: 10.1117/12.2607779
Google Scholar
[59]
S. Chiba, M. Waki, Possibility of a Portable Power Generator Using Dielectric Elastomers and a Charging System for Secondary Batteries, Energies 2022, 15, 5854;.
DOI: 10.3390/en15165854
Google Scholar
[60]
S. Chiba, M. Waki, K. Ohyama, High-performance moisture sensors applying dielectric elastomer, Proc. SPIE 11587 Electroactive Polymer Actuators and devices (EAPAD) XXIII, Virtual, Online, 115871W, (2021);.
DOI: 10.1117/12.2581335
Google Scholar
[61]
S. Koh, X. Zhao, Z. Suo, Maximal Energy That Can Be Converted by a Dielectric Elastomer Generator, Applied Physics Letters, 94, 262902 (2009).
DOI: 10.1063/1.3167773
Google Scholar
[62]
P. Brouchu, H. Li, X. Niu, X., Q. Pei, Factors Influencing the Performance of Dielectric Elastomer Energy Harvesters. In Proc. SPIE, 7642, (EAPAD), Electroactive Actuators and Devices, San Diego, California, USA, 76422J (2010).
DOI: 10.1117/12.847736
Google Scholar
[63]
P. Brochu, W. Yuan, H. Zhang, Q. Pei, Dielectric Elastomers for Direct Wind-to-Electricity Power Generation, In Proc. of ASME 2009 Conference on Smart Materials, Adaptive Structures and Intelligent System, SMASIS2009-1335, Online, (2010) 197-204.
DOI: 10.1115/SMASIS2009-1335
Google Scholar
[64]
J. Zhou, L. Jiang, L., R. Khayat, Dynamic Analysis of a Tunable Viscoelastic Dielectric Elastomer Oscillator under External Excitation, Smart Materials and Structures, 25 - 2 (2016) 025005.
DOI: 10.1088/0964-1726/25/2/025005
Google Scholar
[65]
S. Chiba, M. Waki, Dielectric Elastomer Transducer (High Efficiency Actuator and Power Generation System), To be published in Book, EcoDesign for Sustainable Products, Services and Social Systems, Springer-Nature, March 2023.
Google Scholar
[66]
S. Chiba, R. Kornbluh, R. Pelrine, M. Waki, Low-cost Hydrogen Production From Electroactive Polymer Artificial Muscle Wave Power Generators, Proc. of World Hydrogen Energy Conference 2008, Brisbane, Queensland, Australia, 2008, ISBN:9781615674541.
DOI: 10.1117/12.778345
Google Scholar
[67]
S. Chiba, K. Hasegawa, M. Waki, S. Kurita, An Experimental Study on the Motion of Floating Bodies Arranged in Series for Power Generation, Journal of Material Science and Engineering A7 (11-12), 2017, 281-289, doi:10.17265-6213/2017.11-12.001.
DOI: 10.17265/2161-6213/2017.11-12.001
Google Scholar
[68]
C. Jiang, S. Chiba, M. Waki, K. Fujita, O. el Moctar, An Investigation of Novel Wave Energy Generator Using Dielectric Elastomers, Proc. ASME 39th International Conference on Ocean, Offshore and Arctic Engineers. Virtual, Online, OMAE-18106, 2020.
DOI: 10.1115/OMAE2020-18106
Google Scholar
[69]
M. Iino, T. Miyazaki, M. Iida, Estimation of Cumulative Output Energy of Oscillating Water Colum Wave Energy Converter Considering Power Take Off Damping, Proc. ASME 39th International Conference on Ocean, Offshore and Arctic Engineers, Virtual, Online, OMAE-19172, 2020.
DOI: 10.1115/omae2020-19172
Google Scholar
[70]
F. Arena, L. Daniele, V. Fiamma, M. Fontana, G. Malara, G. Moretti, A. Romolo, G. Papini, A. Scialò, R. Vertechy, Field experiments on dielectric elastomer generators integrated on U-OWC wave energy converter, Proc. OMAE, 2018;.
DOI: 10.1115/omae2018-77830
Google Scholar
[71]
G. Moretti, G. Pietro, R. Papini, I. Daniele, D. Forehand, D. Ingram, R. Vertechy, M. Fontana Modeling and testing of a wave energy converter based on dielectric elastomer generators, Proc., The Royal Society A, The Royal society publishing, Doi.org/.
DOI: 10.1098/rspa.2018.0566
Google Scholar
[72]
S. Chiba, K. Hasegawa, M. Waki, K. Fujita, K., Ohyama, K, S. Zhu 2017, Innovative Elastomer Transducer Driven by Karman Vortices in Water Flow, Journal of Material Science and Engineering A7 (5-6), 2017: 121-135.
DOI: 10.17265/2161-6213/2017.5-6.002
Google Scholar
[73]
Mechanism of geothermal power generation (binary power generation), SB energy, https://www.sbenergy.jp/study/illust/geotherma.
Google Scholar
[74]
D. Yurchenko, Z. Lai, G. Thomson, D.V. Val, R.V. Bobryk, Parametric study of a novel vibro-impact energy harvesting system with dielectric elastomer, Applied Energy, 208 (2017) 456–470.
DOI: 10.1016/j.apenergy.2017.10.006
Google Scholar
[75]
G. Thomson, Z. Lai, D. Val, D. Yurchenko, Advantages of nonlinear energy harvesting with dielectric elastomers. J. Sound and Vibration, 442 (2019), 167–182.
DOI: 10.1016/j.jsv.2018.10.066
Google Scholar
[76]
T. McKay, B. O'Brien, E. Calius, I. Anderson, I., Soft Generators Using Dielectric Elastomers, Applied Physics Letters 98 (14): 142903, 1-3, 2011.
DOI: 10.1063/1.3572338
Google Scholar
[77]
I. Anderson, T. Gisby, T. McKay, B. O'Brien1, E. Calius, Multi-functional Dielectric Elastomer Artificial Muscles for Soft and Smart Machines, J. Appl. Phys. 112 (4), 041101, 2012.
DOI: 10.1063/1.4740023
Google Scholar
[78]
V. Kessel, R. Wattez, P. Bauer, Analyses and Comparison of an Energy Harvesting System for Dielectric Elastomer Generators Using a Passive Harvesting Concept: The Voltage-clamped Multi-phase System, In SPIE 9430, Electroactive Polymer Actuators and Devices (EAPAD), San Dan Diego, California, USA 943006 (2015).
DOI: 10.1117/12.2084316
Google Scholar