[1]
Lubombo C. and Huneault M.A. Effect of infill patterns on the mechanical performance of lightweight 3d-printed cellular pla parts. Materials Today Communications, 17:214 – 228, 2018.
DOI: 10.1016/j.mtcomm.2018.09.017
Google Scholar
[2]
M Hlinka. Non-destructive Testing for the Influence of Infill Pattern Geometry on Mechanical Stiffness of 3D Printing Materials. PhD thesis, Florida Atlantic University, 2022.
Google Scholar
[3]
Sivasankaran S. Mustafa A. Aloyaydi, B. Investigation of infill-patterns on mechanical response of 3d printed poly-lactic-acid. Polymer Testing, 87:106557, 2020.
DOI: 10.1016/j.polymertesting.2020.106557
Google Scholar
[4]
Kumar S.D. Magarajan U. Rajkumar S. Arulmurugan B. Sharma S. Li C. Ilyas R.A. Badran M.F. Ganeshkumar, S. Investigation of infill-patterns on mechanical response of 3d printed polylactic- acid. Materials, 15:5142, 2022.
DOI: 10.3390/ma15155142
Google Scholar
[5]
R. Srinivasan, W. Ruban, A. Deepanraj, R. Bhuvanesh, and T. Bhuvanesh. Effect on infill density on mechanical properties of petg part fabricated by fused deposition modelling. Materials Today: Proceedings, 27:1838–1842, 2020. First International conference on Advanced Lightweight Materials and Structures.
DOI: 10.1016/j.matpr.2020.03.797
Google Scholar
[6]
Jesús Miguel Chacón, Miguel Angel Caminero, Eustaquio García-Plaza, and Pedro José Núñez. Additive manufacturing of pla structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design, 124:143–157, 2017.
DOI: 10.1016/j.matdes.2017.03.065
Google Scholar
[7]
Zaveri N. Parab, S. Investigating the influence of infill pattern on the compressive strength of fused deposition modelled pla parts. Proceedings of the International Conference on Intelligent Manufacturing and Automation, pages 239–247, 2020.
DOI: 10.1007/978-981-15-4485-9_25
Google Scholar
[8]
Nagendra G. Tanikella, Ben Wittbrodt, and Joshua M. Pearce. Tensile strength of commercial polymer materials for fused filament fabrication 3d printing. Additive Manufacturing, 15:40–47, 2017.
DOI: 10.1016/j.addma.2017.03.005
Google Scholar
[9]
Sama S.R. Lynch P.C. Manogharan G. Wang, J. Design and topology optimization of 3d-printed wax patterns for rapid investment casting. Procedia manufacturing, 34:683–694, 2019.
DOI: 10.1016/j.promfg.2019.06.224
Google Scholar
[10]
Wang L. Ma G. Li, Z. Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3d printing subjected to different loading conditions. Procedia manufacturing, 187:107796, 2020.
DOI: 10.1016/j.compositesb.2020.107796
Google Scholar
[11]
Y.S. Kumar, S.A. Narayan. Tensile testing and evaluation of 3d-printed pla specimens as per astm d638 type iv standard. In Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD, pages 79–95, 2019.
DOI: 10.1007/978-981-13-2718-6_9
Google Scholar
[12]
S. Kain, Josef Valentin Ecker, Andreas Haider, Mauricio Musso, and Alexander Petutschnigg. Effects of the infill pattern on mechanical properties of fused layer modeling (flm) 3d printed wood/polylactic acid (pla) composites. European Journal of Wood and Wood Products, 78:65–74, 2019.
DOI: 10.1007/s00107-019-01473-0
Google Scholar
[13]
Malik B. Sharma P. Singh A. Chalisgaonkar R. Investigation Maurya, S. Investigation of different parameters of cube printed using pla by fdm 3d printer. Materials Today: Proceedings, pages 1–6, 2022.
DOI: 10.1016/j.matpr.2022.03.700
Google Scholar
[14]
Li Y. Song W. Yee K. Lee K.Y. Tagarielli V.L. Song, Y. Measurements of the mechanical response of unidirectional 3d-printed pla. Materials & Design: Proceedings, 123:154–164, 2017.
DOI: 10.1016/j.matdes.2017.03.051
Google Scholar
[15]
J.H. Díaz-Aguilera H.R. Acevedo-Parra Fidencio Tapia SS.L. Rodríguez-Reyna, Cristian Mata. Mechanical properties optimization for pla, abs and nylon + cf manufactured by 3d fdm printing. Materials today Communications, 33:104774, 2022.
DOI: 10.1016/j.mtcomm.2022.104774
Google Scholar
[16]
Ana M. Ferreira-Luke Dixon Kenny Dalgarno Natacha Rodrigues, Matthew Benning. Manufacture and characterization of porous pla scaffolds. Procedia CIRP, 49:33–38, 2016.
DOI: 10.1016/j.procir.2015.07.025
Google Scholar
[17]
Astm d 638-22 standard test method for tensile properties of plastics, 2022.
Google Scholar
[18]
Raymond J. Roark and Warren C. Young. Roark's Formulas for Stress and Strain. McGraw- Hill Education, 8 edition, 2011.
Google Scholar