[1]
Z. Sheng, and A. Richard Horrocks, A Review of Flame Retardant Polypropylene Fibres, Progress in Polymer Science. 28 (2003) 1517–38.
DOI: 10.1016/j.progpolymsci.2003.09.001
Google Scholar
[2]
W. Zhao, C. K. Kundu, L. Zhiwei, L. Xiaohong, and Z. Zhang, Flame Retardant Treatments for Polypropylene: Strategies and Recent Advances Composites Part A, Applied Science and Manufacturing. 145 (2021) 106382.
DOI: 10.1016/j.compositesa.2021.106382
Google Scholar
[3]
C. Zhang, Y. Jiang, L. Shenghua, Z. Huang, X.Q. Zhang, N. Ma, and F. C. Tsai, Recent Trends of Phosphorus-Containing Flame Retardants Modified Polypropylene Composites Processing, Heliyon. 8 (2022) 11225.
DOI: 10.1016/j.heliyon.2022.e11225
Google Scholar
[4]
Shields, T. J, and J. Zhang, Fire Hazard with Polypropylene, Polypropylene. (1999) 247–53.
Google Scholar
[5]
S. Bourbigot, M. Le Bras, and R. Delobel, Flame-Retardant Polypropylene Compositions, Polypropylene. (1999) 254–63.
DOI: 10.1007/978-94-011-4421-6_35
Google Scholar
[6]
S. Mohd, M. S. Mohd, I. Zarina, S. Beddu, N.M. Zahari, N. L. M. Kamal, D. Mohamad, N. A. Zulkepli, S. D. Mohamad, and Z. A. A. Hamid, Flame Retardant Coatings: Additives, Binders, and Fillers, Polymers. 14 (2022).
DOI: 10.3390/polym14142911
Google Scholar
[7]
M. T. Clement, E. R. Sadiku, S. S. Ray, M. J. Mochane, K. P. Matabola, and M. Motloung, Flame Retardancy Efficacy of Phytic Acid: An Overview, Journal of Applied Polymer Science.139 (2022) 52495.
DOI: 10.1002/app.52495
Google Scholar
[8]
H. Mohsen, M. Mousavi, M. Shabanian, and H. Vahabi, The Effect of Phosphorus Based Melamine-Terephthaldehyde Resin and Mg-Al Layered Double Hydroxide on the Thermal Stability, Flame Retardancy and Mechanical Properties of Polypropylene MgO Composites, Materials Today Communications. 23 (2020) 100880.
DOI: 10.1016/j.mtcomm.2019.100880
Google Scholar
[9]
H. Vahabi, L. Dumazert, R. Khalili, R. S. Mohammad, and J. M. L . Cuesta, Flame Retardant PP/PA6 Blends: A Recipe for Recycled Wastes, Flame Retardancy and Thermal Stability of Materials. 2 (2019) 1–8.
DOI: 10.1515/flret-2019-0001
Google Scholar
[10]
B. Pani, S. Sirohi, and D. Singh, Studies on the Effects of Various Flame Retardants on Polypropylene, Am. J. Polym. Sci. 3 (2013) 63–69.
Google Scholar
[11]
R. Arjmandi, I. Atikah, H. Azman, and A. B. Aznizam, Effects of Ammonium Polyphosphate Content on Mechanical, Thermal and Flammability Properties of Kenaf/Polypropylene and Rice Husk/Polypropylene Composites, Construction and Building Materials. 152 (2017) 484–93.
DOI: 10.1016/j.conbuildmat.2017.07.052
Google Scholar
[12]
M. Sain, S. H. Park, F. Suhara, and S. Law, Flame Retardant and Mechanical Properties of Natural Fibre-PP Composites Containing Magnesium Hydroxide, Polymer Degradation and Stability. (2004).
DOI: 10.1016/s0141-3910(03)00280-5
Google Scholar
[13]
Z. B. Shao, D. Cong, Y. Tan, Y. Li, M. J. Chen, L. Chen, and Y. Z. Wang,Ammonium Polyphosphate Chemically-Modified with Ethanolamine as an Efficient Intumescent Flame Retardant for Polypropylene, Journal of Materials Chemistry A. 2 (2014) 13955–65.
DOI: 10.1039/c4ta02778g
Google Scholar
[14]
N. Erdem, A. C. Aysun Cireli, and U. H. Erdogan, Effects of Expandable Graphite and Modified Ammonium Polyphosphate on the Flame-Retardant and Mechanical Properties of Wood Flour-Polypropylene Composites, Polymers and Polymer Composites. 111 (2009) 2085–91.
DOI: 10.1177/096739111302100706
Google Scholar
[15]
S. Zhang, J. Peng, L. Xishan, G. Xiaoyu, Q. Zhao, H. Zhongwu, and W. Tang, Effects of Kaolin on the Thermal Stability and Flame Retardancy of Polypropylene Composite, Polymers for Advanced Technologies. 25 (2014) 912–19.
DOI: 10.1002/pat.3325
Google Scholar
[16]
F. Seidi, E. Movahedifar, G. Naderi, V. Akbari, F. Ducos, R. Shamsi, H. Vahabi, and R. S. Mohammad, Flame Retardant Polypropylenes: A Review, Polymers. 12 (2020).
DOI: 10.3390/polym12081701
Google Scholar
[17]
S. Deodhar, S. Kadhiravan, F. Qinguo, A. W. Charles, C. C. Maurius, N. A. Dembsey, and P. K. Patra, Calcium Carbonate and Ammonium Polyphosphate-Based Flame Retardant Composition for Polypropylene, Journal of Apllied Polymer Science. 120 (2011) 1866–73.
DOI: 10.1002/app.32510
Google Scholar
[18]
Z. Lin, C. Chao, G. Zixian, X. Baofeng, L. Xue, and H. Zhuoyao Huang, Polypropylene / Poly ( Lactic Acid ) Semibiocomposites Modified with Two Kinds of Intumescent Flame Retardants, Polymer-Plastics Technology and Engineering. 51 (2012) 991–97.
DOI: 10.1080/03602559.2012.680559
Google Scholar
[19]
ASTM D 635 -03 Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position 1, Am. Soc. Test. Mater. (2010) 1–7.
DOI: 10.1520/d0635-10
Google Scholar
[20]
D. S. Mahajan, S. A Sonawane, M. L Bari, U. D Patil, J. S. Narkhede, and T. D. Deshpande, Stannate and Surface Functionalized Molybdate of Zinc for Enhanced Flame Retardancy of Epoxy Nanocomposites, Journal of Applied Polymer Science. 140 (2023) 53610.
DOI: 10.1002/app.53610
Google Scholar
[21]
Plastic Sheet and Ambient Temperatures, Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics ( Oxygen Index ). (2011) 1–14.
DOI: 10.1520/d2863-17
Google Scholar
[22]
ASTM D 2863 Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics ( Oxygen Index ) 1, Am. Soc. Test. Mater. (2011) 1–13.
DOI: 10.1520/d2863-08
Google Scholar
[23]
ASTM D 2843-99 Standard Test Method Density of Smoke from the Burning or Decomposition of Plastics, Am. Soc. Test. Mater. 8 (2010) 1–9.
Google Scholar
[24]
ASTM D 790 – 02 'Standard test methods for flexural properties of unreinforced and reinforced electrical insulating materials, Am. Soc. Test. Mater. 14 (2003) 146–154.
DOI: 10.1520/d0790-10
Google Scholar
[25]
J. M. Jacob, Chapter 2 - Flammability Performance of Biocomposites." In Green Composites for Automotive Applications, edited by Georgios Koronis and Arlindo Silva, Woodhead Publishing Series in Composites Science and Engineering. Woodhead Publishing. (2019) 43-58.
DOI: 10.1016/b978-1-78242-373-7.09988-1
Google Scholar