Study on Synergistic Flame-Retardancy of Surface Modified Zinc Stannate and Ammonium Polyphosphate on Polypropylene Nanocomposites

Article Preview

Abstract:

The effect of zinc stannate and synergy between zinc stannate with ammonium polyphosphate in polypropylene matrix is studied. The zinc stannate nanoparticles were synthesized by surfactant assisted low temperature precipitation method, and further surface modified with tetraethyl-orthosilicate at room temperature. Zinc stannate (ZS) and ammonium polyphosphate (APP) were incorporated in polypropylene matrix (1, 5 and 10 % by wt.). PP nanocomposites were analysed for flexural strength, tensile strength, linear burning rate, smoke density and LOI test. Morphology of nano particles and composites were analysed by FESEM. Mechanical analysis of PP nanocomposites demonstrates that, the modified ZS-TEOS performed better than unmodified ZS. Smoke density profiles suggest that the APP could slightly generate more smoke in PP with ZS and ZS-TEOS. Linear burning rate test results indicates that the APP with ZS and ZS-TEOS provide stability to PP for resisting flame spread.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-34

Citation:

Online since:

August 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Z. Sheng, and A. Richard Horrocks, A Review of Flame Retardant Polypropylene Fibres, Progress in Polymer Science. 28 (2003) 1517–38.

DOI: 10.1016/j.progpolymsci.2003.09.001

Google Scholar

[2] W. Zhao, C. K. Kundu, L. Zhiwei, L. Xiaohong, and Z. Zhang, Flame Retardant Treatments for Polypropylene: Strategies and Recent Advances Composites Part A, Applied Science and Manufacturing. 145 (2021) 106382.

DOI: 10.1016/j.compositesa.2021.106382

Google Scholar

[3] C. Zhang, Y. Jiang, L. Shenghua, Z. Huang, X.Q. Zhang, N. Ma, and F. C. Tsai, Recent Trends of Phosphorus-Containing Flame Retardants Modified Polypropylene Composites Processing, Heliyon. 8 (2022) 11225.

DOI: 10.1016/j.heliyon.2022.e11225

Google Scholar

[4] Shields, T. J, and J. Zhang, Fire Hazard with Polypropylene, Polypropylene. (1999) 247–53.

Google Scholar

[5] S. Bourbigot, M. Le Bras, and R. Delobel, Flame-Retardant Polypropylene Compositions, Polypropylene. (1999) 254–63.

DOI: 10.1007/978-94-011-4421-6_35

Google Scholar

[6] S. Mohd, M. S. Mohd, I. Zarina, S. Beddu, N.M. Zahari, N. L. M. Kamal, D. Mohamad, N. A. Zulkepli, S. D. Mohamad, and Z. A. A. Hamid, Flame Retardant Coatings: Additives, Binders, and Fillers, Polymers. 14 (2022).

DOI: 10.3390/polym14142911

Google Scholar

[7] M. T. Clement, E. R. Sadiku, S. S. Ray, M. J. Mochane, K. P. Matabola, and M. Motloung, Flame Retardancy Efficacy of Phytic Acid: An Overview, Journal of Applied Polymer Science.139 (2022) 52495.

DOI: 10.1002/app.52495

Google Scholar

[8] H. Mohsen, M. Mousavi, M. Shabanian, and H. Vahabi, The Effect of Phosphorus Based Melamine-Terephthaldehyde Resin and Mg-Al Layered Double Hydroxide on the Thermal Stability, Flame Retardancy and Mechanical Properties of Polypropylene MgO Composites, Materials Today Communications. 23 (2020) 100880.

DOI: 10.1016/j.mtcomm.2019.100880

Google Scholar

[9] H. Vahabi, L. Dumazert, R. Khalili, R. S. Mohammad, and J. M. L . Cuesta, Flame Retardant PP/PA6 Blends: A Recipe for Recycled Wastes, Flame Retardancy and Thermal Stability of Materials. 2 (2019) 1–8.

DOI: 10.1515/flret-2019-0001

Google Scholar

[10] B. Pani, S. Sirohi, and D. Singh, Studies on the Effects of Various Flame Retardants on Polypropylene, Am. J. Polym. Sci. 3 (2013) 63–69.

Google Scholar

[11] R. Arjmandi, I. Atikah, H. Azman, and A. B. Aznizam, Effects of Ammonium Polyphosphate Content on Mechanical, Thermal and Flammability Properties of Kenaf/Polypropylene and Rice Husk/Polypropylene Composites, Construction and Building Materials. 152 (2017) 484–93.

DOI: 10.1016/j.conbuildmat.2017.07.052

Google Scholar

[12] M. Sain, S. H. Park, F. Suhara, and S. Law, Flame Retardant and Mechanical Properties of Natural Fibre-PP Composites Containing Magnesium Hydroxide, Polymer Degradation and Stability. (2004).

DOI: 10.1016/s0141-3910(03)00280-5

Google Scholar

[13] Z. B. Shao, D. Cong, Y. Tan, Y. Li, M. J. Chen, L. Chen, and Y. Z. Wang,Ammonium Polyphosphate Chemically-Modified with Ethanolamine as an Efficient Intumescent Flame Retardant for Polypropylene, Journal of Materials Chemistry A. 2 (2014) 13955–65.

DOI: 10.1039/c4ta02778g

Google Scholar

[14] N. Erdem, A. C. Aysun Cireli, and U. H. Erdogan, Effects of Expandable Graphite and Modified Ammonium Polyphosphate on the Flame-Retardant and Mechanical Properties of Wood Flour-Polypropylene Composites, Polymers and Polymer Composites. 111 (2009) 2085–91.

DOI: 10.1177/096739111302100706

Google Scholar

[15] S. Zhang, J. Peng, L. Xishan, G. Xiaoyu, Q. Zhao, H. Zhongwu, and W. Tang, Effects of Kaolin on the Thermal Stability and Flame Retardancy of Polypropylene Composite, Polymers for Advanced Technologies. 25 (2014) 912–19.

DOI: 10.1002/pat.3325

Google Scholar

[16] F. Seidi, E. Movahedifar, G. Naderi, V. Akbari, F. Ducos, R. Shamsi, H. Vahabi, and R. S. Mohammad, Flame Retardant Polypropylenes: A Review, Polymers. 12 (2020).

DOI: 10.3390/polym12081701

Google Scholar

[17] S. Deodhar, S. Kadhiravan, F. Qinguo, A. W. Charles, C. C. Maurius, N. A. Dembsey, and P. K. Patra, Calcium Carbonate and Ammonium Polyphosphate-Based Flame Retardant Composition for Polypropylene, Journal of Apllied Polymer Science. 120 (2011) 1866–73.

DOI: 10.1002/app.32510

Google Scholar

[18] Z. Lin, C. Chao, G. Zixian, X. Baofeng, L. Xue, and H. Zhuoyao Huang, Polypropylene / Poly ( Lactic Acid ) Semibiocomposites Modified with Two Kinds of Intumescent Flame Retardants, Polymer-Plastics Technology and Engineering. 51 (2012) 991–97.

DOI: 10.1080/03602559.2012.680559

Google Scholar

[19] ASTM D 635 -03 Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position 1, Am. Soc. Test. Mater. (2010) 1–7.

DOI: 10.1520/d0635-10

Google Scholar

[20] D. S. Mahajan, S. A Sonawane, M. L Bari, U. D Patil, J. S. Narkhede, and T. D. Deshpande, Stannate and Surface Functionalized Molybdate of Zinc for Enhanced Flame Retardancy of Epoxy Nanocomposites, Journal of Applied Polymer Science. 140 (2023) 53610.

DOI: 10.1002/app.53610

Google Scholar

[21] Plastic Sheet and Ambient Temperatures, Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics ( Oxygen Index ). (2011) 1–14.

DOI: 10.1520/d2863-17

Google Scholar

[22] ASTM D 2863 Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics ( Oxygen Index ) 1, Am. Soc. Test. Mater. (2011) 1–13.

DOI: 10.1520/d2863-08

Google Scholar

[23] ASTM D 2843-99 Standard Test Method Density of Smoke from the Burning or Decomposition of Plastics, Am. Soc. Test. Mater. 8 (2010) 1–9.

Google Scholar

[24] ASTM D 790 – 02 'Standard test methods for flexural properties of unreinforced and reinforced electrical insulating materials, Am. Soc. Test. Mater. 14 (2003) 146–154.

DOI: 10.1520/d0790-10

Google Scholar

[25] J. M. Jacob, Chapter 2 - Flammability Performance of Biocomposites." In Green Composites for Automotive Applications, edited by Georgios Koronis and Arlindo Silva, Woodhead Publishing Series in Composites Science and Engineering. Woodhead Publishing. (2019) 43-58.

DOI: 10.1016/b978-1-78242-373-7.09988-1

Google Scholar