Studies of Fe3O4 Nanoparticles Prepared by Co-Precipitation Method of FeSO4 and FeCl3 Solution

Article Preview

Abstract:

The magnetic properties of magnetite nanoparticles (Fe3O4 NPs) are being investigated. Fe3O4 NPs were prepared using the co-precipitation method and oven dried. The magnetic properties are influenced by the electron environments of the Fe3+ ions within the iron oxide structure. XPS spectra of Fe3+ (2p3/2) and (2p1/2) show peaks around 706.45 eV and 720.76 eV, respectively. Furthermore, magnetite NPs dried at 60 °C exhibited the largest hysteresis loop at 50K and less at 300K. In addition, the values of Ms and Mr indicate ferromagnetic behavior in Fe3O4 NPs. The result of this material shows high Ms (~38.638 emu/g) at 50K with Hc of 3.094K (near ferromagnetism) and ~33.843 emu/g at 300K with Hc of 0.000K (superparamagnetic). However, these magnetic properties are utilized for biomaterial applications such as separating biomolecules or coating core shells for nanoparticles, which presents an option for future biomedical technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

13-20

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.P. Furlani, Magnetic Biotransport: Analysis and Applications, Materials 3(4) (2010) 2412-2446.

Google Scholar

[2] C.S.S.R. Kumar and F. Mohammad, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery, Adv. Drug Delivery Revi. 63(9) (2011) 789-808.

DOI: 10.1016/j.addr.2011.03.008

Google Scholar

[3] P.B. Shete, R.M. Patil, N.D. Thorat, A. Prasad, R.S. Ningthoujam, S.J. Ghosh and S.H. Pawar, Magnetic chitosan nanocomposite for hyperthermia therapy application: Preparation, characterization and in vitro experiments, Appl. Surf. Sci. 288 (2014) 149-157.

DOI: 10.1016/j.apsusc.2013.09.169

Google Scholar

[4] P.I.P. Soares, D. Machado, C. Laia, L.C.J. Pereira, J.T. Coutinho, I.M.M. Ferreira, C.M.M. Novo Carlos and J.P. Borges, Thermal and magnetic properties of chitosan-iron oxide nanoparticles, Carb. Poly. 149 (2016) 382-390.

DOI: 10.1016/j.carbpol.2016.04.123

Google Scholar

[5] A.S.S. Ibrahim, A.A.Al-Salamah, A.M.El-Toni, M.A.El-Tayeb and Y.B. Elbadawi: submitted to Journal of Elec. J. Bio. (2013).

Google Scholar

[6] S.L. Gawali, S.B. Shelar, J. Gupta, K.C. Barick and P.A. Hassan, Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application, I. J. Bio.M.166 (2021) 851–860.

DOI: 10.1016/j.ijbiomac.2020.10.241

Google Scholar

[7] K.D. Kim, S.S. Kim, Y.H. Choa and H.T. Kim, Formation and Surface Modification of Fe3O4 Nanoparticles by Co-precipitation and Sol-gel Method, J. Ind. Eng. Chem. 13(7) (2007) 1137-1141.

Google Scholar

[8] T. Marin, P. Montoya, O. Arnache and J.A. Calderon: submitted to J. Phys. Chem. B. (2016) 001-051.

Google Scholar

[9] N. Rajkumar, D. Umamahaeswari and K. Ramachandran, Photoacoustics and magnetic studies of Fe3O4 nanoparticles, Inter. J. Nanosci. 9(3) (2010) 243–250.

DOI: 10.1142/s0219581x10006685

Google Scholar

[10] R.F.C. Marques, C. Garcia, P. Lecante, S.J.L. Ribeiro, L. Noe´, J.O.N. Silva, V.S. Amaral, A. Milla´n and M. Verelst, Electro-precipitation of Fe3O4 nanoparticles in ethanol, J. of Magnet. and Mag. Materials 320 (2008) 2311– 2315.

DOI: 10.1016/j.jmmm.2008.04.165

Google Scholar

[11] A.P.A. Faiyas, E.M. Vinod, J. Joseph, R. Ganesan and R.K. Pandey, Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties, J. of Magnet and Mag Materials 322(4) (2010) 400–404.

DOI: 10.1016/j.jmmm.2009.09.064

Google Scholar

[12] Y. Liu, P. Li, Z. Su, F. Li and F. Wen, Attapulgite—Fe3O4 magnetic nanoparticles via co-precipitation technique, Appl. Surf. Sci. 255 (2008) 2020–2025.

DOI: 10.1016/j.apsusc.2008.06.193

Google Scholar

[13] N.D. Kandpal, N. Sah, R. Loshali, R. Joshi and J. Prasad, Co-Precipitation Method of Synthesis and Characterization of Iron Oxide Nanoparticles, J. of Scient. and Indust. Resear.73 (2014) 87-90.

Google Scholar

[14] M. Li and X. Sui, Synthesis and Characterization of Magnetite Particles by Co-Precipitation Method, Key Engineering Materials 512-515 (2012) 82-85.

DOI: 10.4028/www.scientific.net/kem.512-515.82

Google Scholar

[15] F. Wang, C. Yin, X. Wei, Q. Wang, L. Cui, Y. Wang, T. Li and J. Li, Synthesis and Characterization of Superparamagnetic Fe3O4 Nanoparticles Modified with Oleic Acid, Integrat. Ferroelec. 153 (2014) 92–101.

DOI: 10.1080/10584587.2014.903062

Google Scholar

[16] P. Tipsawat, U. Wongpratat, S. Phumying, N. Chanlek, K. Chokprasombat and S. Maensiri, Magnetite (Fe3O4) nanoparticles: Synthesis, characterization and electrochemical properties, Appl. Surf. Sci. 446 (2018) 287-292.

DOI: 10.1016/j.apsusc.2017.11.053

Google Scholar

[17] Y. Li, H. Liao and Y. Qian, Hydrothermal Synthesis of Ultrafine α-Fe2O3 and Fe3O4 Powders, Mater. Resear. Bulletin 33(6) (1998) 841-844.

DOI: 10.1016/s0025-5408(98)00055-5

Google Scholar

[18] S. Wu, A. Sun, F. Zhai, J. Wang, W. Xu, Q. Zhang and A.A. Volinsky, Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation, Mater. Lett. 65(12) (2011) 1882-1884.

DOI: 10.1016/j.matlet.2011.03.065

Google Scholar

[19] L. Diandra, L. Pelecky and R.D. Rieke, Magnetic Properties of Nanostructured Materials, Chem. Mater. 8 (1996) 1770-1783.

DOI: 10.1021/cm960077f

Google Scholar

[20] C.R. Lin, Y.M. Chu and S.C. Wang, Magnetic properties of magnetite nanoparticles prepared by mechanochemical reaction, Mater. Letters. 60 (2006) 447–450.

DOI: 10.1016/j.matlet.2005.09.009

Google Scholar

[21] J. Drbohlavova, R. Hrdy, V. Adam, R. Kizek, O. Schneeweiss and J. Hubalek, Preparation and Properties of Various Magnetic Nanoparticles, Sensors 9 (4) (2009) 2352-2362.

DOI: 10.3390/s90402352

Google Scholar

[22] S.J. Hoseini, H. Nasrabadi, M. Azizi, A.S. Beni and R. Khalifeh, Fe3O4 Nanoparticles as an Efficient and Magnetically Recoverable Catalyst for Friedel Crafts Acylation Reaction in Solvent-Free Conditions, Syn. Com. 43 (2013) 1683-1691.

DOI: 10.1080/00397911.2012.663048

Google Scholar

[23] C. Fu, G. Zhao, H. Zhang and S. Li, A Facile Route to Controllable Synthesis of Fe3O4/Graphene Composites and Their Application in Lithium-Ion Batteries, Inter. J. Electro. Sci. 9 (2014) 46-60.

DOI: 10.1016/s1452-3981(23)07697-6

Google Scholar

[24] M.Z. Borowska, Magnetic nanoparticles coated with aminated starch for HSA immobilization- simple and fast polymer surface functionalization, Inter. J. Bio. Macro. 136 (2019) 106-114.

DOI: 10.1016/j.ijbiomac.2019.06.044

Google Scholar

[25] D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M.P. Stewart, J.M. Tour and C. Zhou, Magnetite (Fe3O4) Core−Shell Nanowires:  Synthesis and Magnetoresistance, Nano. Letter. 4 (11) (2004) 2151-2155.

DOI: 10.1021/nl048758u

Google Scholar

[26] F.X. Juan and L. Xin: submitted to Journal of New Carbon Mater. 27.2 (2012) 111–116.

Google Scholar

[27] Y. Hashimoto, M. Taguchi, S. Fukami, H. Momono, T. Matsushita, H. Matsuda, F. Matsui and H. Daimon, Site-sensitive X-ray photoelectron spectroscopy of Fe3O4 by photoelectron diffraction, Surf. Inter. Anal. 51 (2018) 115-119.

DOI: 10.1002/sia.6568

Google Scholar

[28] P.P. Hankare, S.D. Jashav, U.B. Sankpal, S.S. Chavan, K.J. Waghmare and B.K. Chougule, Synthesis, characterization and effect of sintering temperature on magnetic properties of MgNi ferrite prepared by co-precipitation method, J. Alloy Compd. 475 (2009) 926-929.

DOI: 10.1016/j.jallcom.2008.08.082

Google Scholar

[29] D. Wilson and M.A. Langell, XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature, Appl. Surf. Sci. 303 (2014) 6-13.

DOI: 10.1016/j.apsusc.2014.02.006

Google Scholar