Effect of Silicon-Based Surfactant on Compression Strength, Morphology, and Flammability of the Aluminium Hydroxide-Filled Rigid Polyurethane Foam

Article Preview

Abstract:

This study investigates the impact of NiaxTM Silicone L-5440, a silicon-based surfactant, on the foaming behaviors of rigid polyurethane foam (RPUF) filled with aluminium hydroxide (ATH). The aim is to understand the effect of the surfactant on the compression strength, morphology, and flammability of the foam. Various concentrations of the surfactant, ranging from 0.5 to 3 pphp, were incorporated into the RPUF/ATH blend. Five key parameters were examined, including density, closed-cell content, structural characterization using scanning electron microscopy (SEM), compressive strength, and UL-94 rating. The results revealed that adding the silicon surfactant significantly influenced the foam properties. Foam formulations with lower surfactant concentrations resulted in denser foam with a higher percentage of closed cells (86.24%). The morphology of the foams exhibited variation in average pore sizes, initially decreasing and subsequently increasing with increasing surfactant concentration. Notably, the compressive strength of the foam increased when the surfactant concentration reached 1 pphp. Moreover, the inclusion of the surfactant improved the flammability characteristics, as evidenced by a UL-94 rating of V-1 without dripping.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lee, Shau-Tarng/N. S. Ramesh (2004): Polymeric foams: Mechanisms and Materials, CRC Press.

Google Scholar

[2] Yang, Z., Liu, T., Hu, D., Xu, Z., & Zhao, L. (2019). Foaming window for preparation of microcellular rigid polyurethanes using supercritical carbon dioxide as a blowing agent. The Journal of Supercritical Fluids, 147, 254-262.

DOI: 10.1016/j.supflu.2018.11.001

Google Scholar

[3] Ling, Y., Yao, S., Chen, Y., Hu, D., Xi, Z., & Zhao, L. (2022). A synergetic effect between curing reaction and CO2 diffusion for microcellular epoxy foam preparation in supercritical CO2. The Journal of Supercritical Fluids, 180, 105424.

DOI: 10.1016/j.supflu.2021.105424

Google Scholar

[4] Titow, W. V. (2001). PVC Technology, 146. Rapra Technology Ltd., Shawbury, UK.

Google Scholar

[5] Muhammed Raji, A., Hambali, H. U., Khan, Z. I., Binti Mohamad, Z., Azman, H., & Ogabi, R. (2023). Emerging trends in flame retardancy of rigid polyurethane foam and its composites: A review. Journal of Cellular Plastics, 59(1), 65-122.

DOI: 10.1177/0021955x221144564

Google Scholar

[6] Garside, M. (2020). Polyurethane global demand 2024 Statista., Available at: https://www.statista.com/statistics/747004/polyurethane-demanworldwide/#statisticContainer [Accessed March 16, 2021].

Google Scholar

[7] Dhaliwal, G. S., Anandan, S., Bose, M., Chandrashekhara, K., & Nam, P. (2020). Effects of surfactants on mechanical and thermal properties of soy-based polyurethane foams. Journal of Cellular Plastics, 56(6), 611-629.

DOI: 10.1177/0021955x20912200

Google Scholar

[8] Liu, P., & Chen, G. F. (2014). Porous materials: processing and applications. Elsevier.

Google Scholar

[9] Eling, B., Tomović, Ž., & Schädler, V. (2020). Current and future trends in polyurethanes: An industrial perspective. Macromolecular chemistry and physics, 221(14), 2000114.

DOI: 10.1002/macp.202000114

Google Scholar

[10] Abu-Jdayil, B., Mourad, A. H., Hittini, W., Hassan, M., & Hameedi, S. (2019). Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials, 214, 709-735.

DOI: 10.1016/j.conbuildmat.2019.04.102

Google Scholar

[11] Ju, Z., He, Q., Zhang, H., Zhan, T., Chen, L., Li, S., ... & Lu, X. (2020). Steam explosion of windmill palm fiber as the filler to improve the acoustic property of rigid polyurethane foams. Polymer Composites, 41(7), 2893-2906.

DOI: 10.1002/pc.25585

Google Scholar

[12] Srihanum, Adnan et al. (2022): Low-density rigid polyurethane foam incorporated with renewable polyol as sustainable thermal insulation material, in: Journal of Cellular Plastics, vol. 58, no. 3, p.485–503, [online].

DOI: 10.1177/0021955x211062630

Google Scholar

[13] Chen, X. Y., Huang, Z. H., Xi, X. Q., Li, J., Fan, X. Y., & Wang, Z. (2018). Synergistic effect of carbon and phosphorus flame retardants in rigid polyurethane foams. Fire and Materials, 42(4), 447-453.

DOI: 10.1002/fam.2511

Google Scholar

[14] Zhang, X.D et al. (1999): Role of silicone surfactant in flexible polyurethane foam, in: Journal of Colloid and Interface Science, vol. 215, no. 2, p.270–279, [online].

DOI: 10.1006/jcis.1999.6233

Google Scholar

[15] Xu, J., Chen, Z., Xue, J., Chen, Y., & Liu, Z. (2017). A review of experimental results of steel-reinforced recycled aggregate concrete members and structures in China (2010-2016). Procedia engineering, 210, 109-119.

DOI: 10.1016/j.proeng.2017.11.055

Google Scholar

[16] Palanisamy, A. (2013). Water‐blown polyurethane–clay nanocomposite foams from biopolyol—effect of nanoclay on the properties. Polymer composites, 34(8), 1306-1312.

DOI: 10.1002/pc.22543

Google Scholar

[17] Mondal, P., & Khakhar, D. V. (2007). Rigid polyurethane–clay nanocomposite foams: Preparation and properties. Journal of Applied Polymer Science, 103(5), 2802-2809.

DOI: 10.1002/app.24507

Google Scholar

[18] Baferani, A. H., Keshavarz, R., Asadi, M., & Ohadi, A. R. (2018). Effects of Silicone Surfactant on the Properties of Open‐Cell Flexible Polyurethane Foams. Advances in Polymer Technology, 37(1), 71-83.

DOI: 10.1002/adv.21643

Google Scholar

[19] Han, M. S., Choi, S. J., Kim, J. M., Kim, Y. H., Kim, W. N., Lee, H. S., & Sung, J. Y. (2009). Effects of silicone surfactant on the cell size and thermal conductivity of rigid polyurethane foams by environmentally friendly blowing agents. Macromolecular research, 17, 44-50.

DOI: 10.1007/bf03218600

Google Scholar

[20] Boinowitz, T., Borgogelli, R., & Gower, W. (2004). Impact of Silicone Surfactants on the Flammability of Flexible Slabstock Foam–Comparison of California TB 117/draft 2002 with Established Flammability Tests. Journal of cellular plastics, 40(4), 299-313.

DOI: 10.1177/0021955x04045183

Google Scholar

[21] Lim, H. S. H. K., Kim, S. H., & Kim, B. K. (2008). Effects of silicon surfactant in rigid polyurethane foams. Express Polym. Lett, 2(3), 194-200.

DOI: 10.3144/expresspolymlett.2008.24

Google Scholar

[22] Chen, Z., Wu, Y., & Wei, Y. (2013). Cesium removal from high-level liquid waste utilizing a macroporous silica-based Calix [4] arene-R14 adsorbent modified with surfactants. Energy Procedia, 39, 319-327.

DOI: 10.1016/j.egypro.2013.07.219

Google Scholar

[23] Snow, S. A., & Stevens, R. E. (2019). The science of silicone surfactant application in the formation of polyurethane foam. In Silicone surfactants (pp.137-158). Routledge.

DOI: 10.1201/9780203739754-5

Google Scholar

[24] Rossmy, G. R., Kollmeier, H. J., Lidy, W., Schator, H., & Wiemann, M. (1977). Cell-opening in one-shot flexible polyether-based polyurethane foams. The Role of Silicone Surfactant and its Foundation in the Chemistry of Foam Formation. Journal of Cellular Plastics, 13(1), 26-35.

DOI: 10.1177/0021955x7701300102

Google Scholar

[25] Yang, B., Jaber, R., & Edler, K. J. (2012). Silica–Surfactant–Polyelectrolyte Film Formation: Evolution in the Subphase. Langmuir, 28(22), 8337-8347.

DOI: 10.1021/la3014317

Google Scholar

[26] Kanner, B., Prokai, B., Eschbach, C. S., & Murphy, G. J. (1979). New aspects of the stabilization of flexible polyether urethane foam by silicone surfactants. Journal of Cellular Plastics, 15(6), 315-320.

DOI: 10.1177/0021955x7901500603

Google Scholar

[27] Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., ... & Spiegelman, B. M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1), 115-124.

DOI: 10.1016/S0092-8674(00)80611-X

Google Scholar