[1]
Lee, Shau-Tarng/N. S. Ramesh (2004): Polymeric foams: Mechanisms and Materials, CRC Press.
Google Scholar
[2]
Yang, Z., Liu, T., Hu, D., Xu, Z., & Zhao, L. (2019). Foaming window for preparation of microcellular rigid polyurethanes using supercritical carbon dioxide as a blowing agent. The Journal of Supercritical Fluids, 147, 254-262.
DOI: 10.1016/j.supflu.2018.11.001
Google Scholar
[3]
Ling, Y., Yao, S., Chen, Y., Hu, D., Xi, Z., & Zhao, L. (2022). A synergetic effect between curing reaction and CO2 diffusion for microcellular epoxy foam preparation in supercritical CO2. The Journal of Supercritical Fluids, 180, 105424.
DOI: 10.1016/j.supflu.2021.105424
Google Scholar
[4]
Titow, W. V. (2001). PVC Technology, 146. Rapra Technology Ltd., Shawbury, UK.
Google Scholar
[5]
Muhammed Raji, A., Hambali, H. U., Khan, Z. I., Binti Mohamad, Z., Azman, H., & Ogabi, R. (2023). Emerging trends in flame retardancy of rigid polyurethane foam and its composites: A review. Journal of Cellular Plastics, 59(1), 65-122.
DOI: 10.1177/0021955x221144564
Google Scholar
[6]
Garside, M. (2020). Polyurethane global demand 2024 Statista., Available at: https://www.statista.com/statistics/747004/polyurethane-demanworldwide/#statisticContainer [Accessed March 16, 2021].
Google Scholar
[7]
Dhaliwal, G. S., Anandan, S., Bose, M., Chandrashekhara, K., & Nam, P. (2020). Effects of surfactants on mechanical and thermal properties of soy-based polyurethane foams. Journal of Cellular Plastics, 56(6), 611-629.
DOI: 10.1177/0021955x20912200
Google Scholar
[8]
Liu, P., & Chen, G. F. (2014). Porous materials: processing and applications. Elsevier.
Google Scholar
[9]
Eling, B., Tomović, Ž., & Schädler, V. (2020). Current and future trends in polyurethanes: An industrial perspective. Macromolecular chemistry and physics, 221(14), 2000114.
DOI: 10.1002/macp.202000114
Google Scholar
[10]
Abu-Jdayil, B., Mourad, A. H., Hittini, W., Hassan, M., & Hameedi, S. (2019). Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Construction and Building Materials, 214, 709-735.
DOI: 10.1016/j.conbuildmat.2019.04.102
Google Scholar
[11]
Ju, Z., He, Q., Zhang, H., Zhan, T., Chen, L., Li, S., ... & Lu, X. (2020). Steam explosion of windmill palm fiber as the filler to improve the acoustic property of rigid polyurethane foams. Polymer Composites, 41(7), 2893-2906.
DOI: 10.1002/pc.25585
Google Scholar
[12]
Srihanum, Adnan et al. (2022): Low-density rigid polyurethane foam incorporated with renewable polyol as sustainable thermal insulation material, in: Journal of Cellular Plastics, vol. 58, no. 3, p.485–503, [online].
DOI: 10.1177/0021955x211062630
Google Scholar
[13]
Chen, X. Y., Huang, Z. H., Xi, X. Q., Li, J., Fan, X. Y., & Wang, Z. (2018). Synergistic effect of carbon and phosphorus flame retardants in rigid polyurethane foams. Fire and Materials, 42(4), 447-453.
DOI: 10.1002/fam.2511
Google Scholar
[14]
Zhang, X.D et al. (1999): Role of silicone surfactant in flexible polyurethane foam, in: Journal of Colloid and Interface Science, vol. 215, no. 2, p.270–279, [online].
DOI: 10.1006/jcis.1999.6233
Google Scholar
[15]
Xu, J., Chen, Z., Xue, J., Chen, Y., & Liu, Z. (2017). A review of experimental results of steel-reinforced recycled aggregate concrete members and structures in China (2010-2016). Procedia engineering, 210, 109-119.
DOI: 10.1016/j.proeng.2017.11.055
Google Scholar
[16]
Palanisamy, A. (2013). Water‐blown polyurethane–clay nanocomposite foams from biopolyol—effect of nanoclay on the properties. Polymer composites, 34(8), 1306-1312.
DOI: 10.1002/pc.22543
Google Scholar
[17]
Mondal, P., & Khakhar, D. V. (2007). Rigid polyurethane–clay nanocomposite foams: Preparation and properties. Journal of Applied Polymer Science, 103(5), 2802-2809.
DOI: 10.1002/app.24507
Google Scholar
[18]
Baferani, A. H., Keshavarz, R., Asadi, M., & Ohadi, A. R. (2018). Effects of Silicone Surfactant on the Properties of Open‐Cell Flexible Polyurethane Foams. Advances in Polymer Technology, 37(1), 71-83.
DOI: 10.1002/adv.21643
Google Scholar
[19]
Han, M. S., Choi, S. J., Kim, J. M., Kim, Y. H., Kim, W. N., Lee, H. S., & Sung, J. Y. (2009). Effects of silicone surfactant on the cell size and thermal conductivity of rigid polyurethane foams by environmentally friendly blowing agents. Macromolecular research, 17, 44-50.
DOI: 10.1007/bf03218600
Google Scholar
[20]
Boinowitz, T., Borgogelli, R., & Gower, W. (2004). Impact of Silicone Surfactants on the Flammability of Flexible Slabstock Foam–Comparison of California TB 117/draft 2002 with Established Flammability Tests. Journal of cellular plastics, 40(4), 299-313.
DOI: 10.1177/0021955x04045183
Google Scholar
[21]
Lim, H. S. H. K., Kim, S. H., & Kim, B. K. (2008). Effects of silicon surfactant in rigid polyurethane foams. Express Polym. Lett, 2(3), 194-200.
DOI: 10.3144/expresspolymlett.2008.24
Google Scholar
[22]
Chen, Z., Wu, Y., & Wei, Y. (2013). Cesium removal from high-level liquid waste utilizing a macroporous silica-based Calix [4] arene-R14 adsorbent modified with surfactants. Energy Procedia, 39, 319-327.
DOI: 10.1016/j.egypro.2013.07.219
Google Scholar
[23]
Snow, S. A., & Stevens, R. E. (2019). The science of silicone surfactant application in the formation of polyurethane foam. In Silicone surfactants (pp.137-158). Routledge.
DOI: 10.1201/9780203739754-5
Google Scholar
[24]
Rossmy, G. R., Kollmeier, H. J., Lidy, W., Schator, H., & Wiemann, M. (1977). Cell-opening in one-shot flexible polyether-based polyurethane foams. The Role of Silicone Surfactant and its Foundation in the Chemistry of Foam Formation. Journal of Cellular Plastics, 13(1), 26-35.
DOI: 10.1177/0021955x7701300102
Google Scholar
[25]
Yang, B., Jaber, R., & Edler, K. J. (2012). Silica–Surfactant–Polyelectrolyte Film Formation: Evolution in the Subphase. Langmuir, 28(22), 8337-8347.
DOI: 10.1021/la3014317
Google Scholar
[26]
Kanner, B., Prokai, B., Eschbach, C. S., & Murphy, G. J. (1979). New aspects of the stabilization of flexible polyether urethane foam by silicone surfactants. Journal of Cellular Plastics, 15(6), 315-320.
DOI: 10.1177/0021955x7901500603
Google Scholar
[27]
Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., ... & Spiegelman, B. M. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1), 115-124.
DOI: 10.1016/S0092-8674(00)80611-X
Google Scholar