Experimental Study of the Bearing Capacity of Hybrid Fiber-Reinforced Concrete Pipes

Article Preview

Abstract:

This paper presents the results of an experimental study on hybrid fiber-reinforced concrete pipes (HFRCP). The mechanical behavior of HFRCP, including load capacity, failure mode, and energy dissipation capacity, was evaluated through diametral compression tests. The results were compared with those obtained for reinforced concrete pipes (RCP) using traditional steel cage reinforcement and steel fiber-reinforced concrete pipes (SFRCP). A total of 26 pipes with a 600 mm internal diameter were tested, including 4 RCP, 14 HFRCP, and 8 SFRCP pipes. For the hybrid fiber reinforcement, macro steel fibers (SF) and macro polypropylene fibers (PPF) were used, combined at two different doses: 20-0.5 kg/m3 and 20-1.0 kg/m3 of SF and PPF, respectively. The results indicated that HFRCP achieved a load capacity equivalent to RCP and greater than SFRCP for the fiber dosages utilized. Additionally, HFRCP exhibited a ductile failure mode without concrete detachment or diametral crushing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-62

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Bentur and S. Mindess, Fibre Reinforced Cementitious Composites, second ed., CRC Press, London, (1990).

Google Scholar

[2] C. Zhao, Z. Wang, Z. Zhu, Q. Guo, X. Wu, and R. Zhao, Research on different types of fiber reinforced concrete in recent years: An overview, Construction and Building Materials, 365 (2023), 130075.

DOI: 10.1016/j.conbuildmat.2022.130075

Google Scholar

[4] N. Banthia, F. Majdzadeh, J. Wu and V. Bindiganavile, Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear, Cement and Concrete Composites, 48 (2014) 91-97.

DOI: 10.1016/j.cemconcomp.2013.10.018

Google Scholar

[5] ACI 544.3R-93, Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete., ACI Committee 544, (1993).

DOI: 10.14359/4046

Google Scholar

[6] N.K. Singh and B. Rai, A review of fiber synergy in hybrid fiber reinforced concrete, Journal of Applied Engineering Sciences, 8 (2018) 41-50.

DOI: 10.2478/jaes-2018-0017

Google Scholar

[7] J. Ma, H. Yuan, J. Zhang and P. Zhang, Enhancing concrete performance: A comprehensive review of hybrid fiber reinforced concrete, Structures, 64 (2024) 106560.

DOI: 10.1016/j.istruc.2024.106560

Google Scholar

[8] L. Xu, L. Huang, Y. Chi and G. Mei, Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete, ACI Materials Journal, 113 (2016) 219-229.

DOI: 10.14359/51688641

Google Scholar

[9] M. Zhou, X. He, H. Wang, C. Wu, J. He, and B. Wei, Mechanical properties and microstructure of ITZs in steel and polypropylene hybrid fiber-reinforced concrete, Construction and Building Materials, 415 (2024) 135119.

DOI: 10.1016/j.conbuildmat.2024.135119

Google Scholar

[10] S. Das, M. H. R. Sobuz, V. M. Tam, A. S. M. Akid, N. M. Sutan and F. M. Rahman, Effects of incorporating hybrid fibres on rheological and mechanical properties of fibre reinforced concrete. Construction and Building Materials, 262 (2020) 120561.

DOI: 10.1016/j.conbuildmat.2020.120561

Google Scholar

[11] J. Bošnjak, A. Sharma, and K. Grauf, Mechanical properties of concrete with steel and polypropylene fibres at elevated temperatures, fibers, 7 (2019) 9.

DOI: 10.3390/fib7020009

Google Scholar

[12] B. Li, Y. Chi, L. Xu, Y. Shi, and C. Li, Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete, Construction and Building Materials, 191 (2018) 80–94.

DOI: 10.1016/j.conbuildmat.2018.09.202

Google Scholar

[13] V. S. Vairagade and S. A. Dhale, Hybrid fibre reinforced concrete–a state of the art review, Hybrid Advances, 3 (2023) 100035.

DOI: 10.1016/j.hybadv.2023.100035

Google Scholar

[14] A. Abolmaali, A. Mikhaylova, A. Wilson and J. Lundy, Performance of Steel Fiber-Reinforced Concrete Pipes, Journal of the Transportation Research Board, (2012) 168–177.

DOI: 10.3141/2313-18

Google Scholar

[15] A. Peyvandi, P. Soroushian, and S. Jahangirnejad, Structural Design methodologies for Concrete Pipes with Steel and Synthetic Fiber Reinforcement, ACI Structural Journal, 111 (2014) 83.

DOI: 10.14359/51686432

Google Scholar

[16] A. De la Fuente, A. Figueiredo, A. Aguado, C. Molins and P. J. Chama Neto, Experimentation and numerical simulation of steel fibre reinforced concrete pipes, Materiales de Construcción, 61 (2011) 275-288.

DOI: 10.3989/mc.2010.62810

Google Scholar

[17] N. Mohamed, M. Nehdi, Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes, Engineering Structures, 84 (2016) 287–299.

DOI: 10.1016/j.engstruct.2014.11.033

Google Scholar

[18] S. Lee, Y. Park and A. Abolmaali, Investigation of Flexural Toughness for Steel-and-Synthetic Fiber-Reinforced Concrete Pipes, Structures, (2019) 203-211.

DOI: 10.1016/j.istruc.2018.12.010

Google Scholar

[19] R. Escariz, Análise comparative de desempenho mecânico de tubos de concreto reforçados com macrofibras poliméricas e fibras de aço, Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia de Construção Civil, (2012).

DOI: 10.11606/d.3.2011.tde-09042012-122504

Google Scholar

[20] Y. Park, A. Abolmaali, M. Mohammadagha and S. Lee, Structural performance of dry-cast rubberized concrete pipes with steel and synthetic fibers, Construction and Building Materials, 77 (2016) 218–226.

DOI: 10.1016/j.conbuildmat.2014.12.061

Google Scholar

[21] NBR-8890., Tubo de concreto de seçao circular para agua pluvial e esgoto sanitário Requisitos e métodos de ensaios, Associação Brasileira de Normas Técnicas, (2018).

Google Scholar

[22] ASTM-C1818., Specification for Synthetic Fiber Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe, American Society for Testing and Materials, ASTM International, West Conshohocken, (2019).

DOI: 10.1520/c1818-19

Google Scholar

[23] ASTM-C1765., Specification for Steel Fiber Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe, American Society for Testing and Materials, ASTM International, West Conshohocken, (2019).

DOI: 10.1520/c1765-13

Google Scholar

[24] EN-1916., Concrete pipes and fittings, unreinforced, steel fiber and reinforced, European Committee for Standardization, (2002).

Google Scholar

[25] ASTM C76-13, Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe, American Society for Testing and Materials, ASTM International, West Conshohocken (2013).

DOI: 10.1520/c1818

Google Scholar

[26] ASTM C497-13, Standard test methods for concrete pipe, manhole sections or tile, American Society for Testing and Materials, ASTM International, West Conshohocken (2013).

Google Scholar

[27] F. González and V. Rougier, Análisis experimental del comportamiento mecánico de tubos de hormigón reforzado con fibras híbridas, Informes de la Construcción, 74 (2022) 432-432.

DOI: 10.3989/ic.85975

Google Scholar

[28] B. Akcay and M. A. Tasdemir, Mechanical behaviour and fibre dispersion of hybrid steel fiber reinforced self-compacting concrete, Construction and Building Materials, 28 (2012) 287–293.

DOI: 10.1016/j.conbuildmat.2011.08.044

Google Scholar

[29] T. Haktanir, K. Ari, F. Altun, and O. Karahan, A comparative experimental investigation of concrete, reinforced-concrete and steel-fibre concrete pipes under three-edge-bearing test, Construction and Building Materials, 21 (2007) 1702-1708.

DOI: 10.1016/j.conbuildmat.2006.05.031

Google Scholar

[30] F. Deng, X. Ding, Y. Chi, L. Xu and L. Wang, The pull-out behavior of straight and hooked-end steel fiber from hybrid fiber reinforced cementitious composite: Experimental study and analytical modelling, Composite Structures, 206 (2018) 693-712.

DOI: 10.1016/j.compstruct.2018.08.066

Google Scholar

[31] J. Li and Z. Deng, Tensile behavior of ultra‐high performance concrete reinforced with different hybrid fibers, Structural Concrete, 24 (2023) 1415-1435.

DOI: 10.1002/suco.202200353

Google Scholar

[32] Z. Deng, X. Liu, P. Chen, A. De la Fuente, X. Zhou, N. Liang and L. Du, Basalt-polypropylene fiber reinforced concrete for durable and sustainable pipe production. Part 1: Experimental program, Structural Concrete, 23(1) (2022) 311-327.

DOI: 10.1002/suco.202000759

Google Scholar