[1]
A. Bentur and S. Mindess, Fibre Reinforced Cementitious Composites, second ed., CRC Press, London, (1990).
Google Scholar
[2]
C. Zhao, Z. Wang, Z. Zhu, Q. Guo, X. Wu, and R. Zhao, Research on different types of fiber reinforced concrete in recent years: An overview, Construction and Building Materials, 365 (2023), 130075.
DOI: 10.1016/j.conbuildmat.2022.130075
Google Scholar
[4]
N. Banthia, F. Majdzadeh, J. Wu and V. Bindiganavile, Fiber synergy in Hybrid Fiber Reinforced Concrete (HyFRC) in flexure and direct shear, Cement and Concrete Composites, 48 (2014) 91-97.
DOI: 10.1016/j.cemconcomp.2013.10.018
Google Scholar
[5]
ACI 544.3R-93, Guide for Specifying, Proportioning, Mixing, Placing, and Finishing Steel Fiber Reinforced Concrete., ACI Committee 544, (1993).
DOI: 10.14359/4046
Google Scholar
[6]
N.K. Singh and B. Rai, A review of fiber synergy in hybrid fiber reinforced concrete, Journal of Applied Engineering Sciences, 8 (2018) 41-50.
DOI: 10.2478/jaes-2018-0017
Google Scholar
[7]
J. Ma, H. Yuan, J. Zhang and P. Zhang, Enhancing concrete performance: A comprehensive review of hybrid fiber reinforced concrete, Structures, 64 (2024) 106560.
DOI: 10.1016/j.istruc.2024.106560
Google Scholar
[8]
L. Xu, L. Huang, Y. Chi and G. Mei, Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete, ACI Materials Journal, 113 (2016) 219-229.
DOI: 10.14359/51688641
Google Scholar
[9]
M. Zhou, X. He, H. Wang, C. Wu, J. He, and B. Wei, Mechanical properties and microstructure of ITZs in steel and polypropylene hybrid fiber-reinforced concrete, Construction and Building Materials, 415 (2024) 135119.
DOI: 10.1016/j.conbuildmat.2024.135119
Google Scholar
[10]
S. Das, M. H. R. Sobuz, V. M. Tam, A. S. M. Akid, N. M. Sutan and F. M. Rahman, Effects of incorporating hybrid fibres on rheological and mechanical properties of fibre reinforced concrete. Construction and Building Materials, 262 (2020) 120561.
DOI: 10.1016/j.conbuildmat.2020.120561
Google Scholar
[11]
J. Bošnjak, A. Sharma, and K. Grauf, Mechanical properties of concrete with steel and polypropylene fibres at elevated temperatures, fibers, 7 (2019) 9.
DOI: 10.3390/fib7020009
Google Scholar
[12]
B. Li, Y. Chi, L. Xu, Y. Shi, and C. Li, Experimental investigation on the flexural behavior of steel-polypropylene hybrid fiber reinforced concrete, Construction and Building Materials, 191 (2018) 80–94.
DOI: 10.1016/j.conbuildmat.2018.09.202
Google Scholar
[13]
V. S. Vairagade and S. A. Dhale, Hybrid fibre reinforced concrete–a state of the art review, Hybrid Advances, 3 (2023) 100035.
DOI: 10.1016/j.hybadv.2023.100035
Google Scholar
[14]
A. Abolmaali, A. Mikhaylova, A. Wilson and J. Lundy, Performance of Steel Fiber-Reinforced Concrete Pipes, Journal of the Transportation Research Board, (2012) 168–177.
DOI: 10.3141/2313-18
Google Scholar
[15]
A. Peyvandi, P. Soroushian, and S. Jahangirnejad, Structural Design methodologies for Concrete Pipes with Steel and Synthetic Fiber Reinforcement, ACI Structural Journal, 111 (2014) 83.
DOI: 10.14359/51686432
Google Scholar
[16]
A. De la Fuente, A. Figueiredo, A. Aguado, C. Molins and P. J. Chama Neto, Experimentation and numerical simulation of steel fibre reinforced concrete pipes, Materiales de Construcción, 61 (2011) 275-288.
DOI: 10.3989/mc.2010.62810
Google Scholar
[17]
N. Mohamed, M. Nehdi, Mechanical performance of full-scale precast steel fibre-reinforced concrete pipes, Engineering Structures, 84 (2016) 287–299.
DOI: 10.1016/j.engstruct.2014.11.033
Google Scholar
[18]
S. Lee, Y. Park and A. Abolmaali, Investigation of Flexural Toughness for Steel-and-Synthetic Fiber-Reinforced Concrete Pipes, Structures, (2019) 203-211.
DOI: 10.1016/j.istruc.2018.12.010
Google Scholar
[19]
R. Escariz, Análise comparative de desempenho mecânico de tubos de concreto reforçados com macrofibras poliméricas e fibras de aço, Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia de Construção Civil, (2012).
DOI: 10.11606/d.3.2011.tde-09042012-122504
Google Scholar
[20]
Y. Park, A. Abolmaali, M. Mohammadagha and S. Lee, Structural performance of dry-cast rubberized concrete pipes with steel and synthetic fibers, Construction and Building Materials, 77 (2016) 218–226.
DOI: 10.1016/j.conbuildmat.2014.12.061
Google Scholar
[21]
NBR-8890., Tubo de concreto de seçao circular para agua pluvial e esgoto sanitário Requisitos e métodos de ensaios, Associação Brasileira de Normas Técnicas, (2018).
Google Scholar
[22]
ASTM-C1818., Specification for Synthetic Fiber Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe, American Society for Testing and Materials, ASTM International, West Conshohocken, (2019).
DOI: 10.1520/c1818-19
Google Scholar
[23]
ASTM-C1765., Specification for Steel Fiber Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe, American Society for Testing and Materials, ASTM International, West Conshohocken, (2019).
DOI: 10.1520/c1765-13
Google Scholar
[24]
EN-1916., Concrete pipes and fittings, unreinforced, steel fiber and reinforced, European Committee for Standardization, (2002).
Google Scholar
[25]
ASTM C76-13, Standard Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe, American Society for Testing and Materials, ASTM International, West Conshohocken (2013).
DOI: 10.1520/c1818
Google Scholar
[26]
ASTM C497-13, Standard test methods for concrete pipe, manhole sections or tile, American Society for Testing and Materials, ASTM International, West Conshohocken (2013).
Google Scholar
[27]
F. González and V. Rougier, Análisis experimental del comportamiento mecánico de tubos de hormigón reforzado con fibras híbridas, Informes de la Construcción, 74 (2022) 432-432.
DOI: 10.3989/ic.85975
Google Scholar
[28]
B. Akcay and M. A. Tasdemir, Mechanical behaviour and fibre dispersion of hybrid steel fiber reinforced self-compacting concrete, Construction and Building Materials, 28 (2012) 287–293.
DOI: 10.1016/j.conbuildmat.2011.08.044
Google Scholar
[29]
T. Haktanir, K. Ari, F. Altun, and O. Karahan, A comparative experimental investigation of concrete, reinforced-concrete and steel-fibre concrete pipes under three-edge-bearing test, Construction and Building Materials, 21 (2007) 1702-1708.
DOI: 10.1016/j.conbuildmat.2006.05.031
Google Scholar
[30]
F. Deng, X. Ding, Y. Chi, L. Xu and L. Wang, The pull-out behavior of straight and hooked-end steel fiber from hybrid fiber reinforced cementitious composite: Experimental study and analytical modelling, Composite Structures, 206 (2018) 693-712.
DOI: 10.1016/j.compstruct.2018.08.066
Google Scholar
[31]
J. Li and Z. Deng, Tensile behavior of ultra‐high performance concrete reinforced with different hybrid fibers, Structural Concrete, 24 (2023) 1415-1435.
DOI: 10.1002/suco.202200353
Google Scholar
[32]
Z. Deng, X. Liu, P. Chen, A. De la Fuente, X. Zhou, N. Liang and L. Du, Basalt-polypropylene fiber reinforced concrete for durable and sustainable pipe production. Part 1: Experimental program, Structural Concrete, 23(1) (2022) 311-327.
DOI: 10.1002/suco.202000759
Google Scholar