[1]
M. Yuvaraj, K.S. Bose, P. Elavarasi and E. Tawfik, Soil salinity and its management, Soil moisture importance. 1(2021) 109.
DOI: 10.5772/intechopen.93329
Google Scholar
[2]
A.S. Abdulhussein and M. Mihalache, The assessment of salinity-affected lands in southern Iraq using satellite imagery, Agronomy. 65 (2022) 1216.
Google Scholar
[3]
I.A. Gelil, Environmental Education for Sustainable Development in Arab Countries, in: N. Saab, A. Badran and A.K. Sadek (Beirut: Arab Forum for Environment and Development), 2019, p.150.
Google Scholar
[4]
N. Adamo, N. Al-Ansari, V. Sissakian, K.J. Fahmi and S.A. Abed. Climate change: Droughts and increasing desertification in the Middle East, with special reference to Iraq, Engineering. 14 (2022) 235.
DOI: 10.4236/eng.2022.147021
Google Scholar
[5]
M.A.A. Abadelah, 2021. A survey study of soil salinity and pH in some agricultural areas within the Al-Najaf Governorate, Kufa Journal for Agricultural Sciences. 13(2021) 16.
DOI: 10.36077/kjas/2021/130102
Google Scholar
[6]
A.S. Qureshi, W.Ahmad and A.A. Alfalahi, Salinity management in Central and Southern Iraq: Prospects under existing drainage conditions, Irrigation and Drainage. 62 (2013) 414.
DOI: 10.1002/ird.1746
Google Scholar
[7]
K.A. Al-Jassim, Natural Reasons Causing Soil Salinity and its Impact of Plant Production in Ali-Algharbi District, Iraqi Journal of Desert Studies. 11 (2021) 246.
DOI: 10.36531/desert.2022.172743
Google Scholar
[8]
T. Wheeler and J.V. Braun, Climate change impacts on global food security, Science. 341(2013) 508.
Google Scholar
[9]
G. Shapland, Water security in Iraq (IRAQ: Middle East Centre), 2023 p.16.
Google Scholar
[10]
S.A. Abdulrahman, The water paradox: overcoming the global crisis in water management, International Journal of Environmental Studies. 76 (2019) 714.
Google Scholar
[11]
S.K. Bello, A.H. Alayafi, S.G. Al-Solaimani and K.A. Abo-Elyousr, Mitigating soil salinity stress with gypsum and bio-organic amendments: A review, Agronomy. 11 (2021) 1735.
DOI: 10.3390/agronomy11091735
Google Scholar
[12]
A. Baddour and M. El-Kafrawy, Effect of zeolite soil addition under different irrigation intervals on maize yield (Zea mays L.) and some soil properties, Journal of Soil Sciences and Agricultural Engineering. 11 (2020) 793.
DOI: 10.21608/jssae.2020.160919
Google Scholar
[13]
B. Kalita, T. Saikia and A. Zaman, Impact of natural zeolite in agriculture with special reference to field crops, International Journal of Chemical Studies. 9 (2021) 2220.
DOI: 10.22271/chemi.2021.v9.i1ae.11549
Google Scholar
[14]
I.S. Mosaad, E.M. Selim, D.E. Gaafar and M.A. Al-Anoos, Effects of humic and fulvic acids on forage production and grain quality of triticale under various soil salinity levels, Cereal Research Communications. 53 (2024) 1-19.
DOI: 10.1007/s42976-024-00609-0
Google Scholar
[15]
S.A. Rekaby, A.A. Al-Huqail, M. Gebreel, S.S. Alotaibi and A.M. Ghoneim, Compost and humic acid mitigate the salinity stress on quinoa (Chenopodium quinoa Willd L.) and improve some sandy soil properties, Journal of Soil Science and Plant Nutrition. 23 (2023) 2651.
DOI: 10.1007/s42729-023-01221-7
Google Scholar
[16]
P. Khemthong, S. Prayoonpokarach and J. Wittayakun, Synthesis and characterization of zeolite LSX from rice husk silica, Suranaree Journal of Science and Technology. 14 (2007) 367.
DOI: 10.1007/s11814-008-0142-y
Google Scholar
[17]
R. Baird, E. Rice and A. Eaton, Standard methods for the examination of water and wastewaters, Vol. 1 (USA: American Public Health Association). 2017, p.71.
Google Scholar
[18]
D. Korkmaz, Precipitation Titration: Determination of chloride by the Mohr method, Methods. 2 (2001) 1-6.
Google Scholar
[19]
A.A. Mussa, H.S. Elferjani, F.A. Haroun and F.F. Abdelnabi, Determination of available nitrate, phosphate and sulfate in soil samples, International Journal of Pharm Tech Research. 1(2009) 598-604.
Google Scholar
[20]
F. Behrouzian, S.M. Razavi and G.O. Phillips, Cress seed (Lepidium sativum) mucilage, an overview, Bioactive Carbohydrates and Dietary Fibre. 3 (2014) 17.
DOI: 10.1016/j.bcdf.2014.01.001
Google Scholar
[21]
Y. Zhang, X. Wang, B. Liu, Q. Liu, H. Zheng, X. You, K. Sun, X. Luo and F. Li, Comparative study of individual and Co-Application of biochar and wood vinegar on blueberry fruit yield and nutritional quality, Chemosphere. 246 (2020) 125699.
DOI: 10.1016/j.chemosphere.2019.125699
Google Scholar
[22]
M. Mondal, B. Biswas, S. Garai, S. Sarkar, K. Brahmachari, P.K. Bandyopadhyay, S. Maitra, H. Banerjee, M. Brestic, M. Skalicky, P. Ondrisik and A. Hossain, Zeolites Enhance Soil Health, Crop Productivity and Environmental Safety, Agronomy. 11(2021) 448.
DOI: 10.3390/agronomy11030448
Google Scholar
[23]
X. Wang, J. Wei, D. Yuan, Y. Wang and Y. Zhang, Effect of biochar, zeolite, and humic acid on the mobility and uptake of cadmium and lead by lettuce grown in contaminated soil, Frontiers in Agronomy. 4 (2022) 848621.
Google Scholar
[24]
Y. Li, F. Fang, J. Wei1, X. Wu, R. Cui, G. Li, F. Zheng and D. Tan, Humic Acid fertilizer improved Soil properties and Soil Microbial Diversity of continuous cropping peanut: A Three-Year experiment, Scientific Reports. 9 (2019) 12014.
DOI: 10.1038/s41598-019-48620-4
Google Scholar
[25]
A.S. Kloc, J. Szerement, A. Adamczuk and G. Józefaciuk, Effect of Low Zeolite Doses on Plants and Soil Physicochemical Properties, Materials. 4 (2021) 2617.
DOI: 10.3390/ma14102617
Google Scholar
[26]
P.D. Jardin, Review Plant biostimulants: Definition, concept, main categories and regulation, Scientia Horticulturae. 196 (2015) 3-14.
DOI: 10.1016/j.scienta.2015.09.021
Google Scholar
[27]
H. Zhou, K. Fu, Y. Shen, R. Li, Y. Su, Y. Deng, Y. Xia and N. Zhang, Physiological and Biochemical Mechanisms of Wood Vinegar-Induced Stress Response against Tomato Fusarium Wilt Disease, Plants. 13 (2024) 157.
DOI: 10.3390/plants13020157
Google Scholar
[28]
F.A. Mumpton, La roca magica: Uses of natural zeolites in agriculture and industry, PNAS USA. 96 (1999) 3463.
DOI: 10.1073/pnas.96.7.3463
Google Scholar
[29]
Y. Chen and T. Aviad, Humic Substances in Soil and Crop Sciences: Selected Readings, ed P. MacCarthy, C.E. Clapp, R.L. Malcolm and P.R. Bloom, (USA: American Society of Agronomy, Inc. Soil Science Society of America, Inc.) 1990, p.161.
DOI: 10.2136/1990.humicsubstances.c11
Google Scholar
[30]
E. K. Mahmoud and N.A. El-Kader, Effect of wood vinegar on nutrients availability and microbial activity in sandy soil, Archives of Agronomy and Soil Science. 61 (2015) 531.
Google Scholar
[31]
R. Huang, The effect of humic acid on the desalinization of coastal clayey saline soil, Water Supply. 22 (2022) 7242.
DOI: 10.2166/ws.2022.311
Google Scholar
[32]
W. Zhao, H. Zhao, X. Sun, H. Wang, Y. Sun, Y. Liang and D. Wang, Biochar and wood vinegar altered the composition of inorganic phosphorus bacteria community in saline-alkali soils and promoted the bioavailability of phosphorus, Journal of Environmental Management. 370 (2024) 122501.
DOI: 10.1016/j.jenvman.2024.122501
Google Scholar
[33]
S. Wang and Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chemical Engineering Journal. 156 (2010) 11.
DOI: 10.1016/j.cej.2009.10.029
Google Scholar
[34]
S. Nardia, D. Pizzeghelloa, A. Muscolob and A. Vianello, Physiological effects of humic substances on higher plants, Soil Biology & Biochemistry. 34 (2002) 1527.
DOI: 10.1016/s0038-0717(02)00174-8
Google Scholar
[35]
Q. Wang and F. Fu, Removal of heavy metal ions from wastewaters: A review, Journal of Environmental Management. 92 (2011) 407.
DOI: 10.1016/j.jenvman.2010.11.011
Google Scholar
[36]
F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, 2nd Edition (New York: Wiley), 1994, p.267.
Google Scholar
[37]
T. Mungkunkamchao, T. Kesmala, S. Pimratch, B. Toomsan and D. Jothityangkoon, Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.), Scientia Horticulturae. 154 (2013) 66.
DOI: 10.1016/j.scienta.2013.02.020
Google Scholar
[38]
R.F. Harris and D.F. Bezdicek, Defining Soil Quality for a Sustainable Environment, ed J.W. Doran, D.C. Coleman, D.F. Bezdicek and B.A. Stewart, (USA: Soil Science Society of America). 1994, p.33.
DOI: 10.2136/sssaspecpub35
Google Scholar
[39]
B.S. Dhillon, V. Virender Kumar, P. Sagwal, N. Kaur, G.S. Mangat and S. Singh, Seed Priming with Potassium Nitrate and Gibberellic Acid Enhances the Performance of Dry Direct Seeded Rice (Oryza sativa L.) in North-Western India, Agronomy. 11(2021) 849.
DOI: 10.3390/agronomy11050849
Google Scholar
[40]
A. Mohammed, A.O.S. Al-Zeadei, A.K. Al-Jwaid and Y. Al-Salim, Enhance heavy metals removal from salinity-polluted soil using an aerobic digestion food waste, Journal of Ecological Engineering. 26 (2025) 332-341.
Google Scholar
[41]
S.A. Mussa, H.S. Elferjani, F.A. Haroun and F.F. Abdelnabi, Determination of available nitrate, phosphate and sulfate in soil samples, International Journal of PharmTech Research. 1 (2009) 598-604.
Google Scholar