p.801
p.807
p.813
p.819
p.825
p.832
p.838
p.843
p.849
Modeling Knowledge Employee’s Turnover Based on P-SVM
Abstract:
Knowledge employee’s turnover forecast is a multi-criteria decision-making problem involving various factors. In order to forecast accurately turnover of knowledge employees, the potential support vector machines(P-SVM) is introduced to develop a turnover forecast model. In the model development, a chaos algorithm and a genetic algorithm (GA) are employed to optimize P-SVM parameters selection. The simulation results show that the model based on potential support vector machine with chaos not only has much stronger generalization ability but also has the ability of feature selection.
Info:
Periodical:
Pages:
825-831
Citation:
Online since:
June 2010
Authors:
Keywords:
Price:
Сopyright:
© 2010 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: