An Investigation on the Local Structure of Silicon: Liquid to Undercooled Regime

Article Preview

Abstract:

We present the modelled local structure for undercooled silicon beginning from its liquid state, ~1730K to ~1550K. The modelling procedure was achieved by using reverse Monte Carlo (RMC) modelling technique fitting to x-ray static structure factors. The calculated radial distribution functions satisfied experimental observes either liquid or undercooled region. To make a detailed analysis on the modelled local environment we have focused on the distributions both average numbers of atoms within first coordination shell and bond angles whereas the uniqueness of model is discussible. In order to construct model that is more close to nature, the minimum and maximum bond lengths and the average coordination number constraints could have been used. The predicted results using RMC technique show that there is a possible structural transition and it slightly transforms into covalent-like bounded open network structure from its metallic structure, while decreasing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Pages:

519-522

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Stich, R. Car and M. Parrinello: Phys. Rev. B Vol. 44(1991), p.4262.

Google Scholar

[2] Y. Waseda and K. Suzuki: Z. Phys. Vol. 20(1975), p.339.

Google Scholar

[3] Y. Waseda, K. Shinoda, K. Sugiyama and S. Takeda: Jpn. J. Appl. Phys. Vol. 34(1995), p.4124.

Google Scholar

[4] K. Higuchi, K. Kimura, A. Mizuno, M. Watanabe, Y. Katayama and K. Kuribayashi: J. Non- Cryst. Solids Vol. 353(2007), p.2997.

Google Scholar

[5] S. Ansell, S. Krishnan, J. J. Felten and D. L. Price: J. Phys.: Condens. Matt. Vol. 10(1998), p. L73.

Google Scholar

[6] N. Jakse, L. Hennet, D. L. Price, S. Krishnan, . T. Key, E. Artacho, B. Glorieux, A. Pasturel and M. L. Saboungi: Appl. Phys. Lett. Vol. 83(2003), p.4734.

DOI: 10.1063/1.1631388

Google Scholar

[7] A. Delisle, D. J. González and M. J. Stott: Phys. Rev. B Vol. 73 (2006), p.064202.

Google Scholar

[8] I. Stich, R. Car and M. Parrinello: Phys. Rev. B Vol. 63(1989), p.2240.

Google Scholar

[9] T. Morishita: Phys. Rev. Lett. Vol. 97(2006), p.165502.

Google Scholar

[10] Y. Kadiri, N Jakse, J. -F. Wax and J. -L Bretonnet: J. Non-Cryst. Solids Vol. 312(2002), p.143.

Google Scholar

[11] N Jakse and A Pasturel: Phys. Rev. Lett. Vol. 99(2007), p.205702.

Google Scholar

[12] R.L. McGreevy and L. Pusztai: Mol. Simul. Vol. 1(1988), p.359.

Google Scholar

[13] S. Dalgic and M. Colakogullari: J. Non-Cryst. Solids Vol. 353(2007), p. (1936).

Google Scholar

[14] S. Dalgic and M. Colakogullari: J. Optoelectron. Adv. Mater. Vol. 11(2009), p. (2074).

Google Scholar

[15] P. Biswas, R. Atta-Fynn and D. A. Drabold: Phys. Rev. B Vol. 69(2004), p.195207.

Google Scholar

[16] A general purpose for reverse Monte Carlo Code, http: /www. isis. rl. ac. uk/rmc/downloads/rmca/rmca_3_14. pdf.

Google Scholar

[17] R.L. McGreevy, P. Zetterström: Current Opinion in Solid State and Materials Science Vol. 7 (2003), p.41.

Google Scholar

[18] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller: J. Phys. Chem. Vol. 21 (1953), p.1087.

DOI: 10.1063/1.1699114

Google Scholar

[19] RMCA, Version 3. 14, http: /www. isis. rl. ac. uk/RMC/downloads/rmca. htm.

Google Scholar

[20] Z. Zhou, S. Mukherjee and W.K. Rhim: J. Cryst. Growth Vol. 257 (2003), p.350.

Google Scholar

[21] H. Kimura et al.: Appl. Phys. Lett. Vol. 78 (2001), p.604. 2 3 4 5 6 7 8 9 1732K 1607K 1557K P(n) Coordination Number (b) 0 20 40 60 80 100 120 140 160 180 1732 K 1557 K 1557 K with smaller cut-off Bond Angle Distribution Angle (Degree) (a).

Google Scholar