Large-Scale Synthesize ZnO Micro/Nano Rods Fabricated from Aqueous Solutions at Low Temperature

Article Preview

Abstract:

ZnO micro/nano rods were grown on fluorine doped tin oxide (FTO) substrates by aqueous chemical growth (ACG) using Zn(NO3)2•6H2O and C6H12N4 at low temperature. For comparison, the yield of nanorods on indium-tin-oxide (ITO) substrates with same parameters was also discussed. SEM, TEM, SAED and XRD were utilized to characterize morphologies and structures of ZnO crystals. It was indicated that the temperature and the concentration of the solution significantly leads to the yields of the ZnO. Single-crystalline ZnO micro/nano rods could be synthesized via an aqueous solution route without adding alkali solution at 70°C in large area.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Pages:

715-718

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Liang, H. Sheng, Y. Liu, Z. Hio, Y. Lu and H. Shen: J. Cryst. Growth Vol. 225 (2001), p.110.

Google Scholar

[2] J.Y. Lee, Y.S. Choi, J.H. Kim, M.O. Park and S. Im: Thin Solid Films Vol. 403 (2002), p.553.

Google Scholar

[3] N. Golego, S.A. Studenikin and M. Cocivera: J. Electrochem. Soc. Vol. 147 (2000), p.1592.

Google Scholar

[4] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S. -E. Lindquist, L. Wang and M. Muhammed: J. Phys. Chem. B Vol. 101 (1997), p.2598.

DOI: 10.1021/jp962918b

Google Scholar

[5] K. Keis, L. Vayssieres, S. -E. Lindquist, A. Hagfeldt: Nanostruct. Mater. Vol. 12 (1999), p.487.

Google Scholar

[6] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang: Science Vol. 292 (2001), p.1897.

DOI: 10.1126/science.1060367

Google Scholar

[7] Z.W. Pan, Z.R. Dai and Z.L. Wang: Science Vol. 291 (2001), p. (1947).

Google Scholar

[8] Z.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi and H. Xu: Nat. Mater. Vol. 2 (2003), p.821.

Google Scholar

[9] S.J. Henley, M.N.R. Ashfold, D.P. Nicholls, P. Wheatley and D.E. Cherns: Appl. Phys. A. Vol. 79 (2004), p.1169.

Google Scholar

[10] Y. Li, G.W. Meng, L.D. Zhang and F. Phillipp: Appl. Phys. Lett. Vol. 76 (2000), p. (2011).

Google Scholar

[11] J.J. Wu and S.C. Liu: Adv. Mater. Vol. 14 (2002), p.215.

Google Scholar

[12] Y. Sun, G.M. Fuge and M.N.R. Ashfold: Chem. Phys. Lett. Vol. 396 (2004), p.21.

Google Scholar

[13] S. Choopun, H. Tabata and T. Kawai: J. Cryst. Growth Vol. 274 (2005), p.167.

Google Scholar

[14] L. Vayssieres: Int. J. Nanotechnol. Vol. 1 (2004), p.1.

Google Scholar

[15] L. Vayssieres: Adv. Mater. Vol. 15 (2003), p.464.

Google Scholar

[16] D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis and N. Katsarakis: Thin Solid Films Vol. 515 (2007), p.8764.

DOI: 10.1016/j.tsf.2007.03.108

Google Scholar

[17] Y.J. Gao, W.C. Zhang, X.L. Wu, Y. Xia, G.S. Huang, L.L. Xu, J.C. Shen, G.G. Siu and Paul K. Chu: Applied Surface Science Vol. 255 (2008), p. (1982).

Google Scholar

[18] S. Yamabi and H. Imai: J. Mater. Chem. Vol. 12 (2002), p.3773.

Google Scholar

[19] A. Zwick and R. Carles: Phys. Rev. B Vol. 48 (1993), p.6024.

Google Scholar