Tensile Properties of 1060 Al Alloy Subjected to Constrained Groove Pressing

Article Preview

Abstract:

Three groups of commercial 1060 Al alloy sheets were subjected to constrained groove pressing (CGP) at room temperature using parallel CGP, 180° cross CGP and 90° cross CGP, respectively. Tensile properties and fracture modes of as-annealed and CGPed samples were investigated. The ultimate tensile strength (UTS) of 1060 Al increases significantly after CGP, while the elongation decreases. But they are strongly dependence on the number of CGP passes and the pressing modes. The UTS and elongation of the samples processed by 90° cross CGP are best, consequently, the static toughness of the 90° cross CGPed samples is enhanced. Besides, all CGPed specimens failed in a ductile manner. With increasing the number of CGP pass, the amount of small dimples increases, and the dimples become shallow and more uniform.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 129-131)

Pages:

65-69

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.H. Shin, J.J. Park, Y.S. Kim and K.T. Park: Mater. Sci. Eng. A Vol. 328 (2002), p.98.

Google Scholar

[2] K.H. Yang and W.Z. Chen: J. Plasticity. Eng. Vol. 17 (2010), p.124.

Google Scholar

[3] K.H. Yang, Y.Q. Wu and W.Z. Chen: China Mech. Eng. (2010), in press.

Google Scholar

[4] K.H. Yang, K.P. Peng and W.Z. Chen: J. Plasticity. Eng. (2010), in press.

Google Scholar

[5] J.W. Lee and J.J. Park: J. Mater. Process. Techno. Vols. 130-131 (2002), p.208.

Google Scholar

[6] A. Krishnaiah, U. Chakkingal and P. Venugopal: Scripta Mater. Vol. 52 (2005), p.1229.

Google Scholar

[7] J. Zrnik, T. Kovarik and M. Cieslar: Mater. Sci. Forum Vols. 584-586 (2008), p.535.

Google Scholar

[8] J. Zrnik, T. Kovarik, Z. Novy and M. Cieslar: Mater. Sci. Eng. A Vol. 503 (2009), p.126.

Google Scholar

[9] A. Krishnaiah, U. Chakkingal and P. Venugopal: Mater. Sci. Eng. A Vols. 410-411 (2005), p.337.

Google Scholar

[10] E. Rafizadeh, A. Mani and M. Kazeminezhad: Mater. Sci. Eng. A Vol. 515 (2009), p.162.

Google Scholar

[11] A. Shirdel, A. Khajeh and M.M. Moshksar: Mater. Design Vol. 31 (2010), p.946.

Google Scholar

[12] S. C. Yoon, A. Krishnaiah, U. Chakkingal and H.S. Kim: Comput. Mater. Sci. Vol. 43 (2008), p.641.

Google Scholar

[13] K. Peng, L. Su, L. Shaw and K-W Qian: Scripta Mater. Vol. 56 (2007), p.987.

Google Scholar

[14] K. Peng, Y. Zhang, L. Shaw and K-W Qian: Acta Mater. Vol. 57 (2009), p.5543.

Google Scholar

[15] K.H. Yang, K.P. Peng and W.Z. Chen: submitted to The Chinese Journal of Nonferrous Metals (2010).

Google Scholar

[16] D.R. Fang, Q.Q. Duan, N.Q. Zhao, J.J. Li, S.D. Wu and Z.F. Zhang: Mater. Sci. Eng. A Vol. 459 (2007), p.137.

Google Scholar

[17] D.R. Fang, Z.F. Zhang, S.D. Wu, C.X. Huang, H. Zhang, N.Q. Zhao and J.J. Li: Mater. Sci. Eng. A Vol. 426 (2006), p.305.

Google Scholar

[18] A. Mishra, B.K. Kad, F. Gregori and M.A. Meyers: Acta Mater. Vol. 55 (2007), p.13.

Google Scholar

[19] Y.G. Ko, D.H. Shin, K.T. Park and C.S. Lee: Scripta Mater. Vol. 54 (2006), p.1785.

Google Scholar