Mathematical Model Research on Ultrasonic Breaking Up Dendrite in Preparing Semi-Solid A356

Article Preview

Abstract:

In this paper, we introduce an mathematical theory model of ultrasonic breaking up dendrite through the experiment of put ultrasonic vibration on melting A356, which is based on the condition of the effect factors of particles compelled movement on crystal integrality. It can be seen that two factors are very importment to crushing the grain through ultrasonic vibration, namely, structure conditions of the grain growth and the dynamic conditions provided by the ultrasonic. The driving force provide by the ultrasonic can be direct alternating mechanical force and the second, third and so on sound wave force caused by ultrasound wave reflection, scattering etc.. Form the model we can found that the larger the ultrasonic power and amplitude, conditions can be more easily satisfied; simlarly the higher the ultrasonic frequency, angle crossing number, grain structure defects, the longer action time to make greater fatigue, all this factors can also make the conditions more easily satisfied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 129-131)

Pages:

70-73

Citation:

Online since:

August 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Z. Omar, H.V. Atkinson, A.A. Howe, E.J. Palmiere, P. Kapranos and M.J. Ghazali: J. Mater. Sci. Vol. 44 (2009), p.869.

Google Scholar

[2] M.C. Flemings: Metall. Trans. Vol. 22A (1991), p.957.

Google Scholar

[3] D.H. Kirkwood: Int. Mater. Rev. Vol. 39 (1994), p.173.

Google Scholar

[4] Z. Fan: Int. Mater. Rev. Vol. 47 (2002), p.49.

Google Scholar

[5] I. Gutierrez-Urrutia, M.A. Munoz-Morris, D G Morris: Acta Materialia Vol. 55 (2007), p.1319.

Google Scholar

[6] M. Moradi, M. Nili-Ahmadabadi and B. Heidarian: Int. J. Mater. Form Vol. 2 (2009), p.85.

Google Scholar

[7] A. Vencl, I Bobic, M.T. Jovanovic, M. Babic, S. Mitrovic: Tribol Lett Vol. 32 (2008), p.159.

Google Scholar

[8] J.G. Conley, J. Huang, J. Asada and K. Akiba: Mater. Sci. Eng. A Vol. 285 (2000), p.49.

Google Scholar

[9] M. Paes, E.J. Zoqui: Mater. Sci. Eng. A Vol. 406 (2005), p.63.

Google Scholar

[10] X. Yang, Y Jing and J. Liu: J. Mater. Process. Technol. Vol. 130-131 (2002), p.569.

Google Scholar

[11] E.R. de Freitas, E.G. F. Júnior, V.P. Piffer, M. Ferrante: Mater. Res. Vol. 7 (2004), p.595.

Google Scholar

[12] Y.L. Li: Chin. J. Nonferrous Met. Vol. 9 (1999), p.719.

Google Scholar

[13] M. Abdel-Rehim and W. Reif: Metall Vol. 38 (1984), p.1156.

Google Scholar

[14] G.I. Eskin: Ultrason. Sonochem. Vol. 8 (2001), p.319.

Google Scholar

[15] H.B. Zhang, Q.J. Zhai, F.P. Qi and Y.Y. Gong: Trans. Nonferrous Met. Soc. China Vol. 14 (2004), p.302.

Google Scholar