Design and Realization of the SMT Product Character Recognition System

Abstract:

Article Preview

We present an approach to recognizing characters in surface mount technology (SMT) product. An improved SMT product character recognition method is proposed which can obtain a good recognition rate. Some appropriate image processing algorithms, such as Gray processing, Low-pass Filter, Median Filter, and so on, are used to eliminate the noise. Then, Character image is obtained after character segmentation and character normalization. Finally, a three-layer back propagation (BP) neural network module is constructed. In order to improve the convergence rate of the network and avoid oscillation and divergence, the BP algorithm with momentum item is used. As a result, the SMT product character recognition system is developed. Experimental results indicate that the proposed character recognition can obtain satisfactory character-recognition rate and the recognition rate reached over by 98.6% when the hidden layer of BP neural network module has 20 nodes.

Info:

Periodical:

Advanced Materials Research (Volumes 139-141)

Edited by:

Liangchi Zhang, Chunliang Zhang and Tielin Shi

Pages:

1736-1739

DOI:

10.4028/www.scientific.net/AMR.139-141.1736

Citation:

H. H. Zhao et al., "Design and Realization of the SMT Product Character Recognition System", Advanced Materials Research, Vols. 139-141, pp. 1736-1739, 2010

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.