Adaptive Integral-Type Sliding Mode Control for Magnetic Levitation Linear Guide Suspension Altitude

Abstract:

Article Preview

This paper investigates the constant position suspension altitude control problem for a novel magnetic levitation linear guide. The magnetic levitation linear guide is comprised of a magnetic suspension processing platform and a linear motor direct-drive system. The magnetic suspension system has several characteristics of complicated nonlinearity, parameter perturbation and strong disturbance. In view of these characteristics, an adaptive integral-type sliding mode control (AISMC) technique is used to design magnetic suspension system constant position suspension altitude controller. The AISMC can alleviate chattering and reduce steady error by estimating the boundary of uncertain perturbation. The adaptive tuning algorithm is derived in the sense of the Lyapunov stability theorem, thus the stability of the system can be guaranteed. Simulation results indicate that the proposed AISMC has a better stability, transient and robustness compared with PID control.

Info:

Periodical:

Advanced Materials Research (Volumes 139-141)

Edited by:

Liangchi Zhang, Chunliang Zhang and Tielin Shi

Pages:

867-871

DOI:

10.4028/www.scientific.net/AMR.139-141.867

Citation:

J. F. Mao et al., "Adaptive Integral-Type Sliding Mode Control for Magnetic Levitation Linear Guide Suspension Altitude", Advanced Materials Research, Vols. 139-141, pp. 867-871, 2010

Online since:

October 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.