Property of Cu-Zr-Ti Ternary Alloys

Article Preview

Abstract:

The influence of Zr on the property of Cu(50+x)Zr(40-x)Ti10 (0≤x≤30 at.%) alloys were investigated. The results show that the maximum size for the glass formation in this Cu-Zr-Ti system is less than 8 mm. The hardness increases with decreasing of the Zr content, then decreases when the Zr content exceeds 10~15 at.% due to the obvious alteration of the type of the crystalline phases and the microstructure. With decreasing of the Zr content, the transformation sequence of the main Cu-Zr phase is Cu10Zr7→Cu5Zr→Cu51Zr14; the transformation sequence of Cu-Ti phase is Cu4Ti3→CuTi→CuTi3. In addition, the atom ratio of Cu60Zr30Ti10 alloys is coherent with that of their corresponding crystalline phase, resulting in its better glass forming ability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Pages:

1477-1481

Citation:

Online since:

October 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. H. Wang: Prog. Mater. Sci. Vol. 52 (2007), p.540.

Google Scholar

[2] A. Inoue: Acta Mater. Vol. 48 (2000), p.279.

Google Scholar

[3] A. L. Greer and E. Ma: MRS Bull. Vol. 32 (2007), p.611.

Google Scholar

[4] X.H. Lin and W.L. Johnson: J. Appl. Phys. Vol. 78 (1995), p.6514.

Google Scholar

[5] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka: Acta Mater. Vol. 49 (2001), p.2645.

Google Scholar

[6] J.C. Lee, Y.C. Kim, J.P. Ahn, S. Lee and B.J. Lee: Appl. Phys. Lett. Vol. 84 (2004), P. 2781.

Google Scholar

[7] J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang and J. Eckert: Phys. Rev. Lett. Vol. 94 (2005), p.205501.

Google Scholar

[8] P. Wesseling, T.G. Nieh, W.H. Wang and J. J. Lewandowski: Scripta Mater. Vol. 51 (2004), p.151.

Google Scholar

[9] A. Inoue, W. Zhang, T. Tsurui, A.R. Yavari and A.L. Greer: Philos. Mag. Lett. Vol. 85 (2005), p.221.

Google Scholar

[10] D.H. Xu, G. Duan and W. L. Johnson: Phys. Rev. Lett. Vol. 92 (2004), p.245504.

Google Scholar

[11] S.W. Lee, M.Y. Huh, E. Fleury and J.C. Lee: Acta Mater. Vol. 54 (2006), p.349.

Google Scholar

[12] C.L. Dai, H. Guo, Y. Shen, L Y. i, E. Ma and J. Xu: Scripta Mater. Vol. 54 (2006), p.1403.

Google Scholar

[13] Y. Shen, E. Ma and J. Xu: J. Mater. Sci. Technol. Vol. 24 (2008), p.149.

Google Scholar

[14] P. Jia, H. Guo, Y. Li, J. Xu and E. Ma: Scripta Mater. Vol. 54 (2006), p.2165.

Google Scholar

[15] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka: Mater. Trans. JIM Vol. 42 (2001), p.1149.

Google Scholar

[16] A. Inoue: Mater. Trans. JIM Vol. 36 (1995), p.866.

Google Scholar

[17] A. H. Cai, X. Xiong, Y. Liu, W. K. An, J. Y. Tan and Y. Pan: J. Alloys Compd. Vol. 468 (2009), p.432.

Google Scholar

[18] A. H. Cai, G. X. Sun and Y. Pan: Mater. Des. Vol. 27 (2006), p.479.

Google Scholar

[19] A. H. Cai, Y. Pan, J. Gu and G. X. Sun: Mater. Sci. Technol. Vol. 22 (2006), p.859.

Google Scholar

[20] A. H. Cai, X. Xiong, Y. Liu, J. H. Li, W. K. An and Y. Luo: Mater. Sci. Eng. A Vol. 516 (2009), p.100.

Google Scholar